RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Maize root exudate composition alters rhizosphere bacterial community to control hotspots of hydrolase activity in response to nitrogen supply

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2022

Maize root exudate composition alters rhizosphere bacterial community to control hotspots of hydrolase activity in response to nitrogen supply

0 Datasets

0 Files

English
2022
Soil Biology and Biochemistry
Vol 170
DOI: 10.1016/j.soilbio.2022.108717

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Yakov Kuzyakov
Yakov Kuzyakov

Institution not specified

Verified
Cunkang Hao
Jennifer A. J. Dungait
Xiaomeng Wei
+5 more

Abstract

Improving nitrogen (N) acquisition by crops from soil is essential to reduce fertilization rates whilst maintaining yields. Plants can adapt their nutrient acquisition strategies according to N availability, which also affects soil microbial community structure, functions and activities and relies on the supply of carbon (C) for energy. We hypothesized that N deprivation would create hotspots of N- and C-acquiring hydrolase activities in maize rhizosphere through the effects of altered root exudation on the rhizosphere bacterial community. We grew maize under three N fertilization rates and combined soil zymography with the identification of rhizosphere microbial communities and non-targeted metabolic profiling of root exudates to explore enzyme hotspot formation. The rhizosphere extents of β-1,4-glucosidase (BG) and β-N-acetylglucosaminidase (NAG) activities decreased after N fertilization, narrowing by 48% and 39%, respectively, under typical field N application rates compared to zero application. Rhizosphere extents of enzyme activities were more sensitive to altered N supply than changes in the rates of enzyme activities: BG activity decreased by ∼10%, while NAG activity was unaffected. Decreases in the activities of both hydrolases and their rhizosphere extents caused by N addition correlated with reduced abundances of oligotrophs. The relative abundances of oligotrophic bacteria (e.g., Acidobacteria) decreased, while copiotrophs (e.g., Pseudomonadota and Patescibacteria) increased under the highest N application rate. Co-occurrence networks of the rhizosphere bacterial community revealed that functional units increased with BG activity, while an efficient and denser co-occurrence network supported expansion of its rhizosphere extent. The metabolic profiles of root exudates changed according to the N application rate, suggesting that their chemistry was regulated by the plant in response to N supply. The composition of root exudates and dissolved organic C and nitrate contents explained the largest variations in NAG hotspots in the rhizosphere. In summary, maize actively adjusts the composition of root exudates to increase interactions with rhizosphere bacteria, thereby stimulating hydrolase production and activities, and altering their rhizosphere extents to mobilize N and energy (C) in a larger soil volume, under conditions of N deficiency.

How to cite this publication

Cunkang Hao, Jennifer A. J. Dungait, Xiaomeng Wei, Tida Ge, Yakov Kuzyakov, Zhenling Cui, Jing Tian, Fusuo Zhang (2022). Maize root exudate composition alters rhizosphere bacterial community to control hotspots of hydrolase activity in response to nitrogen supply. Soil Biology and Biochemistry, 170, pp. 108717-108717, DOI: 10.1016/j.soilbio.2022.108717.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2022

Authors

8

Datasets

0

Total Files

0

Language

English

Journal

Soil Biology and Biochemistry

DOI

10.1016/j.soilbio.2022.108717

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access