RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Magneto-Structural Correlations in a Series of Pseudotetrahedral [Co<sup>II</sup>(XR)<sub>4</sub>]<sup>2–</sup>Single Molecule Magnets: An ab Initio Ligand Field Study

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2015

Magneto-Structural Correlations in a Series of Pseudotetrahedral [Co<sup>II</sup>(XR)<sub>4</sub>]<sup>2–</sup>Single Molecule Magnets: An ab Initio Ligand Field Study

0 Datasets

0 Files

English
2015
Inorganic Chemistry
Vol 54 (20)
DOI: 10.1021/acs.inorgchem.5b01706

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Frank Neese
Frank Neese

Max Planck

Verified
Elizaveta A. Suturina
Dimitrios Maganas
Eckhard Bill
+2 more

Abstract

Over the past several decades, tremendous efforts have been invested in finding molecules that display slow relaxation of magnetization and hence act as single-molecule magnets (SMMs). While initial research was strongly focused on polynuclear transition metal complexes, it has become increasingly evident that SMM behavior can also be displayed in relatively simple mononuclear transition metal complexes. One of the first examples of a mononuclear SMM that shows a slow relaxation of the magnetization in the absence of an external magnetic field is the cobalt(II) tetra-thiolate [Co(SPh)4](2-). Fascinatingly, substitution of the donor ligand atom by oxygen or selenium dramatically changes zero-field splitting (ZFS) and relaxation time. Clearly, these large variations call for an in-depth electronic structure investigation in order to develop a qualitative understanding of the observed phenomena. In this work, we present a systematic theoretical study of a whole series of complexes (PPh4)2[Co(XPh)4] (X = O, S, Se) using multireference ab initio methods. To this end, we employ the recently proposed ab initio ligand field theory, which allows us to translate the ab initio results into the framework of ligand field theory. Magneto-structural correlations are then developed that take into account the nature of metal-ligand covalent bonding, ligand spin-orbit coupling, and geometric distortions away from pure tetrahedral symmetry. The absolute value of zero-field splitting increases when the ligand field strength decreases across the series from O to Te. The zero-field splitting of the ground state of the hypothetical [Co(TePh)4](2-) complex is computed to be about twice as large as for the well-known (PPh4)2[Co(SPh)4] compound. It is shown that due to the π-anisotropy of the ligand donor atoms (S, Se) magneto-structural correlations in [Co(OPh)4](2-) complex differ from [Co(S/SePh)4](2-). In the case of almost isotropic OPh ligand, only variations in the first coordination sphere affect magnetic properties, but in the case of S/SePh ligand, variations in the first and second coordination sphere become equally important for magnetic properties.

How to cite this publication

Elizaveta A. Suturina, Dimitrios Maganas, Eckhard Bill, Mihail Atanasov, Frank Neese (2015). Magneto-Structural Correlations in a Series of Pseudotetrahedral [Co<sup>II</sup>(XR)<sub>4</sub>]<sup>2–</sup>Single Molecule Magnets: An ab Initio Ligand Field Study. Inorganic Chemistry, 54(20), pp. 9948-9961, DOI: 10.1021/acs.inorgchem.5b01706.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2015

Authors

5

Datasets

0

Total Files

0

Language

English

Journal

Inorganic Chemistry

DOI

10.1021/acs.inorgchem.5b01706

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access