RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Machine Learning-Based Channel Prediction for RIS-assisted MIMO Systems With Channel Aging

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Preprint
English
2024

Machine Learning-Based Channel Prediction for RIS-assisted MIMO Systems With Channel Aging

0 Datasets

0 Files

English
2024
arXiv (Cornell University)
DOI: 10.48550/arxiv.2406.07387

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Matti Latva-aho
Matti Latva-aho

University Of Oulu

Verified
Nipuni Ginige
Arthur S. de Sena
Nurul Huda Mahmood
+2 more

Abstract

Reconfigurable intelligent surfaces (RISs) have emerged as a promising technology to enhance the performance of sixth-generation (6G) and beyond communication systems. The passive nature of RISs and their large number of reflecting elements pose challenges to the channel estimation process. The associated complexity further escalates when the channel coefficients are fast-varying as in scenarios with user mobility. In this paper, we propose an extended channel estimation framework for RIS-assisted multiple-input multiple-output (MIMO) systems based on a convolutional neural network (CNN) integrated with an autoregressive (AR) predictor. The implemented framework is designed for identifying the aging pattern and predicting enhanced estimates of the wireless channels in correlated fast-fading environments. Insightful simulation results demonstrate that our proposed CNN-AR approach is robust to channel aging, exhibiting a high-precision estimation accuracy. The results also show that our approach can achieve high spectral efficiency and low pilot overhead compared to traditional methods.

How to cite this publication

Nipuni Ginige, Arthur S. de Sena, Nurul Huda Mahmood, Nandana Rajatheva, Matti Latva-aho (2024). Machine Learning-Based Channel Prediction for RIS-assisted MIMO Systems With Channel Aging. arXiv (Cornell University), DOI: 10.48550/arxiv.2406.07387.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Preprint

Year

2024

Authors

5

Datasets

0

Total Files

0

Language

English

Journal

arXiv (Cornell University)

DOI

10.48550/arxiv.2406.07387

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access