RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Macao-ebird: A Curated Dataset for Artificial-Intelligence-Powered Bird Surveillance and Conservation in Macao

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2025

Macao-ebird: A Curated Dataset for Artificial-Intelligence-Powered Bird Surveillance and Conservation in Macao

0 Datasets

0 Files

en
2025
Vol 10 (6)
Vol. 10
DOI: 10.3390/data10060084

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Su-kit Tang
Su-kit Tang

Institution not specified

Verified
Xiaoyuan Huang
Silvia Mirri
Su-kit Tang

Abstract

Artificial intelligence (AI) currently exhibits considerable potential within the realm of biodiversity conservation. However, high-quality regionally customized datasets remain scarce, particularly within urban environments. The existing large-scale bird image datasets often lack a dedicated focus on endangered species endemic to specific geographic regions, as well as a nuanced consideration of the complex interplay between urban and natural environmental contexts. Therefore, this paper introduces Macao-ebird, a novel dataset designed to advance AI-driven recognition and conservation of endangered bird species in Macao. The dataset comprises two subsets: (1) Macao-ebird-cls, a classification dataset with 7341 images covering 24 bird species, emphasizing endangered and vulnerable species native to Macao; and (2) Macao-ebird-det, an object detection dataset generated through AI-agent-assisted labeling using grounding DETR with improved denoising anchor boxes (DINO), significantly reducing manual annotation effort while maintaining high-quality bounding-box annotations. We validate the dataset’s utility through baseline experiments with the You Only Look Once (YOLO) v8–v12 series, achieving a mean average precision (mAP50) of up to 0.984. Macao-ebird addresses critical gaps in the existing datasets by focusing on region-specific endangered species and complex urban–natural environments, providing a benchmark for AI applications in avian conservation.

How to cite this publication

Xiaoyuan Huang, Silvia Mirri, Su-kit Tang (2025). Macao-ebird: A Curated Dataset for Artificial-Intelligence-Powered Bird Surveillance and Conservation in Macao. , 10(6), DOI: https://doi.org/10.3390/data10060084.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2025

Authors

3

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.3390/data10060084

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access