0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessVitamin D insufficiency is common, correctable, and influenced by genetic factors, and it has been associated with risk of several diseases. We sought to identify low-frequency genetic variants that strongly increase the risk of vitamin D insufficiency and tested their effect on risk of multiple sclerosis, a disease influenced by low vitamin D concentrations. We used whole-genome sequencing data from 2,619 individuals through the UK10K program and deep-imputation data from 39,655 individuals genotyped genome-wide. Meta-analysis of the summary statistics from 19 cohorts identified in CYP2R1 the low-frequency (minor allele frequency = 2.5%) synonymous coding variant g.14900931G>A (p.Asp120Asp) (rs117913124[A]), which conferred a large effect on 25-hydroxyvitamin D (25OHD) levels (−0.43 SD of standardized natural log-transformed 25OHD per A allele; p value = 1.5 × 10−88). The effect on 25OHD was four times larger and independent of the effect of a previously described common variant near CYP2R1. By analyzing 8,711 individuals, we showed that heterozygote carriers of this low-frequency variant have an increased risk of vitamin D insufficiency (odds ratio [OR] = 2.2, 95% confidence interval [CI] = 1.78–2.78, p = 1.26 × 10−12). Individuals carrying one copy of this variant also had increased odds of multiple sclerosis (OR = 1.4, 95% CI = 1.19–1.64, p = 2.63 × 10−5) in a sample of 5,927 case and 5,599 control subjects. In conclusion, we describe a low-frequency CYP2R1 coding variant that exerts the largest effect upon 25OHD levels identified to date in the general European population and implicates vitamin D in the etiology of multiple sclerosis.
Despoina Manousaki, Tom Dudding, Simon Haworth, Yi‐Hsiang Hsu, Yongmei Liu, Carolina Medina‐Gómez, Trudy Voortman, Nathalie van der Velde, Håkan Melhus, Cassianne Robinson‐Cohen, Diana L. Cousminer, Maria Nethander, Liesbeth Vandenput, Raymond Noordam, Vincenzo Forgetta, Celia M.T. Greenwood, Mary L. Biggs, Bruce M. Psaty, Jerome I. Rotter, Babette S. Zemel, Jonathan A. Mitchell, Bruce Taylor, Mattias Lorentzon, Magnus K. Karlsson, Vincent V. W. Jaddoe, Henning Tiemeier, Natalia Campos‐Obando, Oscar H. Franco, Andre G. Utterlinden, Linda Broer, Natasja M. van Schoor, Annelies C. Ham, M. Arfan Ikram, David Karasik, Renée de Mutsert, Frits R. Rosendaal, Martin den Heijer, Thomas J. Wang, Lars Lind, Eric Orwoll, Dennis O. Mook‐Kanamori, Karl Michaëlsson, Bryan Kestenbaum, Claes Ohlsson, Dan Mellström, C.P.G.M. de Groot, Struan F.A. Grant, Douglas P. Kiel, M. Carola Zillikens, Fernando Rivadeneira, Stephen Sawcer, Nicholas J. Timpson, J. Brent Richards (2017). Low-Frequency Synonymous Coding Variation in CYP2R1 Has Large Effects on Vitamin D Levels and Risk of Multiple Sclerosis. The American Journal of Human Genetics, 101(2), pp. 227-238, DOI: 10.1016/j.ajhg.2017.06.014.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2017
Authors
53
Datasets
0
Total Files
0
Language
English
Journal
The American Journal of Human Genetics
DOI
10.1016/j.ajhg.2017.06.014
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access