RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Long-term creep behavior of novel self-anchored CFRP cable system

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2024

Long-term creep behavior of novel self-anchored CFRP cable system

0 Datasets

0 Files

English
2024
Composite Structures
Vol 334
DOI: 10.1016/j.compstruct.2024.117965

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Peng Feng
Peng Feng

Tsinghua University

Verified
Pengcheng Ai
Guozhen Ding
Zhiyuan Li
+1 more

Abstract

Carbon fiber-reinforced polymer (CFRP) cables are an attractive material for bridge cables due to their light weight, high strength, and corrosion resistance properties. However, research on their long-term creep performance is limited. In this study, long-term creep tests were conducted on self-anchored CFRP cables under various stress levels to evaluate their creep performance and residual mechanical properties. Based on experimental data, million-hour creep coefficients and relaxation coefficients were predicted. The results indicated that the self-anchored CFRP cable system had a million-hour creep coefficient ranging from 6.1 % to 7.9 % at stress levels from 0.3 f u to 0.7 f u (where f u represents the characteristic tensile strength). Additionally, maintaining low and medium stress levels for 1000 h improved the tensile strength and stability of the CFRP cables. The self-anchored CFRP system was also able to provide effective anchorage even after continuous loading. By comparing with the steel cable data in the literature, the self-anchored CFRP system exhibited smaller creep and relaxation, as well as superior residual tensile properties. These findings suggested that the self-anchored CFRP cable exhibited favorable long-term reliability, and finally self-anchored CFRP cables were successfully applied to a bridge in the campus of Tsinghua University.

How to cite this publication

Pengcheng Ai, Guozhen Ding, Zhiyuan Li, Peng Feng (2024). Long-term creep behavior of novel self-anchored CFRP cable system. Composite Structures, 334, pp. 117965-117965, DOI: 10.1016/j.compstruct.2024.117965.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2024

Authors

4

Datasets

0

Total Files

0

Language

English

Journal

Composite Structures

DOI

10.1016/j.compstruct.2024.117965

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access