0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessClamping anchorages are commonly used to anchor carbon fiber reinforced polymer (CFRP) plates, and the anchoring performance is significantly impacted by bolt preload. This research presents experimental and numerical investigations of long-term bolt preload relaxation in clamping anchorages for CFRP plates. First, a compression test was conducted to obtain the elastic modulus in the thickness direction of CFRP plates. Subsequently, four types of relaxation tests (single bolt, planar and curved anchorage, external load effect, and thickened anchorage) were conducted, considering the effects of the number of CFRP plates, anchorage type, external load, and initial preload. The elastic interaction during the tightening process was also investigated. The contact pressure distribution was simulated through the finite element method, which is in good agreement with the experimental results obtained from pressure papers. To fit relaxation test results and predict million-hour relaxation, different theoretical models were employed. The results indicate that the number of CFRP plates is crucial to preload relaxation, and the presence of CFRP plates introduces strong elastic interactions between bolts in the anchorage. Preload relaxation also increases under external loads and with the increase in initial preload. Curved anchorage has less bolt preload relaxation in the long term under external loads. Additionally, thickened anchorages have a more uniform contact pressure distribution due to the improved pressure diffusion mechanism.
Guozhen Ding, Peng Feng, Yu Wang, Pengcheng Ai, Qinyu Wang (2023). Long-term bolt preload relaxation and contact pressure distribution in clamping anchorages for CFRP plates. Composite Structures, 329, pp. 117780-117780, DOI: 10.1016/j.compstruct.2023.117780.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2023
Authors
5
Datasets
0
Total Files
0
Language
English
Journal
Composite Structures
DOI
10.1016/j.compstruct.2023.117780
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access