RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Localising the Seizure Onset Zone from Single-Pulse Electrical Stimulation Responses with a Transformer

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Preprint
en
2024

Localising the Seizure Onset Zone from Single-Pulse Electrical Stimulation Responses with a Transformer

0 Datasets

0 Files

en
2024
DOI: 10.48550/arxiv.2403.20324arxiv.org/abs/2403.20324

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Karl Friston
Karl Friston

University College London

Verified
J. C. Norris
Ajai Chari
Gerald Cooray
+3 more

Abstract

Epilepsy is one of the most common neurological disorders, and many patients require surgical intervention when medication fails to control seizures. For effective surgical outcomes, precise localisation of the epileptogenic focus - often approximated through the Seizure Onset Zone (SOZ) - is critical yet remains a challenge. Active probing through electrical stimulation is already standard clinical practice for identifying epileptogenic areas. This paper advances the application of deep learning for SOZ localisation using Single Pulse Electrical Stimulation (SPES) responses. We achieve this by introducing Transformer models that incorporate cross-channel attention. We evaluate these models on held-out patient test sets to assess their generalisability to unseen patients and electrode placements. Our study makes three key contributions: Firstly, we implement an existing deep learning model to compare two SPES analysis paradigms - namely, divergent and convergent. These paradigms evaluate outward and inward effective connections, respectively. Our findings reveal a notable improvement in moving from a divergent (AUROC: 0.574) to a convergent approach (AUROC: 0.666), marking the first application of the latter in this context. Secondly, we demonstrate the efficacy of the Transformer models in handling heterogeneous electrode placements, increasing the AUROC to 0.730. Lastly, by incorporating inter-trial variability, we further refine the Transformer models, with an AUROC of 0.745, yielding more consistent predictions across patients. These advancements provide a deeper insight into SOZ localisation and represent a significant step in modelling patient-specific intracranial EEG electrode placements in SPES. Future work will explore integrating these models into clinical decision-making processes to bridge the gap between deep learning research and practical healthcare applications.

How to cite this publication

J. C. Norris, Ajai Chari, Gerald Cooray, Martin Tisdall, Karl Friston, Richard Rosch (2024). Localising the Seizure Onset Zone from Single-Pulse Electrical Stimulation Responses with a Transformer. , DOI: https://doi.org/10.48550/arxiv.2403.20324.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Preprint

Year

2024

Authors

6

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.48550/arxiv.2403.20324

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access