0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThe linear minimum mean-squared-error (LMMSE) criterion can be used to obtain near-far resistant receivers in direct-sequence code-division multiple-access systems. The standard version of the LMMSE receiver (postcombining LMMSE) minimizes the mean-squared error between the filter output and the true transmitted data sequence. Since the detector depends on the channel coefficients of all users, it cannot be implemented adaptively in fading channels due to severe tracking problems. A modified criterion for deriving LMMSE receivers (precombining LMMSE) in fading channels is presented. The precombining LMMSE receiver is independent of the users' complex channel coefficients, and it effectively converts the time-varying Rayleigh fading channel to an equivalent fixed additive white Gaussian noise channel from the point of view of updating the detector. The performance of the LMMSE receivers in fading channels is studied via computer simulations and numerical analysis. The results show that the postcombining LMMSE receiver has potentially larger capacity, but it cannot be used in fast fading channels. The precombining LMMSE receiver has slightly worse capacity than the postcombining LMMSE receiver, but remarkably larger capacity than the conventional RAKE receiver at the signal-to-noise ratios of practical interest.
Matti Latva-aho, Markku Juntti (2000). LMMSE detection for DS-CDMA systems in fading channels. IEEE Transactions on Communications, 48(2), pp. 194-199, DOI: 10.1109/26.823551.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2000
Authors
2
Datasets
0
Total Files
0
Language
English
Journal
IEEE Transactions on Communications
DOI
10.1109/26.823551
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access