0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessAdeno-associated virus (AAV) integrates into host genomes at low frequency, but when integration occurs in oncogenic hotspots it can cause hepatocellular carcinoma (HCC). Given the possibility of recombinant AAV (rAAV) integration leading to HCC, common causes of liver inflammation like non-alcoholic fatty liver disease (NAFLD) may increase the risk of rAAV-induced HCC. A rAAV targeting the oncogenic mouse Rian locus was used, and as expected led to HCC in all mice infected as neonates, likely due to growth-related hepatocyte proliferation in young mice. Mice infected with rAAV as adults did not develop HCC unless they were fed a diet leading to NAFLD, with increased inflammation and hepatocyte proliferation. Female mice were less susceptible to rAAV-induced HCC, and male mice with NAFLD treated with estrogen exhibited less inflammation and immune exhaustion associated with oncogenesis compared to those without estrogen. Adult NAFLD mice infected with a non-targeted control rAAV also developed HCC, though only half as frequently as those exposed to the Rian targeted rAAV. This study shows that adult mice exposed to rAAV gene therapy in the context of chronic liver disease developed HCC at high frequency, and thus warrants further study in humans given the high prevalence of NAFLD in the population. Adeno-associated virus (AAV) integrates into host genomes at low frequency, but when integration occurs in oncogenic hotspots it can cause hepatocellular carcinoma (HCC). Given the possibility of recombinant AAV (rAAV) integration leading to HCC, common causes of liver inflammation like non-alcoholic fatty liver disease (NAFLD) may increase the risk of rAAV-induced HCC. A rAAV targeting the oncogenic mouse Rian locus was used, and as expected led to HCC in all mice infected as neonates, likely due to growth-related hepatocyte proliferation in young mice. Mice infected with rAAV as adults did not develop HCC unless they were fed a diet leading to NAFLD, with increased inflammation and hepatocyte proliferation. Female mice were less susceptible to rAAV-induced HCC, and male mice with NAFLD treated with estrogen exhibited less inflammation and immune exhaustion associated with oncogenesis compared to those without estrogen. Adult NAFLD mice infected with a non-targeted control rAAV also developed HCC, though only half as frequently as those exposed to the Rian targeted rAAV. This study shows that adult mice exposed to rAAV gene therapy in the context of chronic liver disease developed HCC at high frequency, and thus warrants further study in humans given the high prevalence of NAFLD in the population.
Dhwanil A. Dalwadi, Laura Torrens, Jordi Abril‐Fornaguera, Roser Pinyol, Catherine E. Willoughby, Jeffrey Posey, Josep M. Llovet, Christian Lanciault, David W. Russell, Markus Grompe, Willscott E. Naugler (2020). Liver Injury Increases the Incidence of HCC following AAV Gene Therapy in Mice. Molecular Therapy, 29(2), pp. 680-690, DOI: 10.1016/j.ymthe.2020.10.018.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2020
Authors
11
Datasets
0
Total Files
0
Language
English
Journal
Molecular Therapy
DOI
10.1016/j.ymthe.2020.10.018
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access