0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessVegetation restoration affects belowground microbial diversity and trait-based life strategies, as well as soil organic matter (SOM) accumulation. Despite the growing focus on microbial diversity, the relationship between SOM accrual and life strategies following vegetation restoration remains unclear. We used three independent but complementary approaches to relate six soil parameters to SOM accrual and further connected them with microbial diversity and life strategies. Sites with two vegetation restoration strategies (after 15 years of vegetation recovery): i) actively planted forests and ii) passive naturally regenerating forests, were compared with croplands and established 60-year-old secondary forests. Data from seven sites along a large climatic gradient (Δ temperature >9 °C) in subtropical karst regions showed that the average index of SOM accrual increased by 47% in plantations and by 60% in natural regeneration forests compared to that in croplands, but remained lower than that of secondary forests. Related soil parameters (water holding capacity, organic carbon and total nitrogen contents, and bacterial and fungal biomasses) were comparable. Compared to croplands, vegetation restoration decreased the sensitivity of the soil parameters to climate warming. Vegetation restoration reduced bacterial diversity and shifted the community towards K-strategy, as evidenced by i) lower 16S rRNA operon copy number and ii) higher ratios of phyla classified a priori as oligotrophic versus copiotrophic bacteria. These changes were mainly attributed to the decline in labile nutrient content and increase in carbon stability in calcium-rich karst soils after vegetation restoration. Bacterial diversity was negatively associated with SOM accrual at low levels of functioning, whereas the prevalence of K-strategists showed a strong positive association with it, especially at near-peak capacity. Consequently, i) bacterial rather than fungal diversity and life strategies are associated with SOM accrual, and ii) linking bacterial life strategies with SOM accrual is important to deepen the understanding of soil-microbial interactions.
Peilei Hu, Wei Zhang, Yakov Kuzyakov, Lumei Xiao, Dan Xiao, Lin Xu, Hongsong Chen, Jie Zhao, Kelin Wang (2022). Linking bacterial life strategies with soil organic matter accrual by karst vegetation restoration. Soil Biology and Biochemistry, 177, pp. 108925-108925, DOI: 10.1016/j.soilbio.2022.108925.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2022
Authors
9
Datasets
0
Total Files
0
Language
English
Journal
Soil Biology and Biochemistry
DOI
10.1016/j.soilbio.2022.108925
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access