0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThe electronic structure of multinuclear transition metal complexes is a highly challenging problem for quantum chemical methods. The problems to be solved for a successful analysis include the following: (1) many unpaired electrons leading to "highly entangled" wave functions that cannot be calculated by standard electronic structure methods, (2) drastic differences between the one-particle and many-particle spectra and a high density of low-lying states, and (3) the interpretation of such highly complex wave functions in chemical terms. In this work, we continue our research on oligonuclear clusters by presenting an in-depth analysis of the electronic structure of a prototypical iron-sulfur (Fe2S2) dimer. Accurate wave functions are obtained from a variety of advanced wave function based methods. The wave function results are interpreted in terms of an effective Hamiltonian that in turn is parametrized in terms of the angular overlap model (AOM) that provides the chemical insights that we are striving for. A hierarchical analysis allows us to interpret the local electronic structure in terms of the thiolate, sulfide ligands, and metal-metal interaction strengths. The many-particle spectrum is analyzed in terms of configurations involving ligand and metal centers. Finally, we are able to derive simple yet effective interpretations of ligand interaction strengths, the metal-metal interaction strength, and the low-lying many-particle spectrum of the Fe2S2 dimer.
Vijay Gopal Chilkuri, Serena DeBeer, Frank Neese (2019). Ligand Field Theory and Angular Overlap Model Based Analysis of the Electronic Structure of Homovalent Iron–Sulfur Dimers. Inorganic Chemistry, 59(2), pp. 984-995, DOI: 10.1021/acs.inorgchem.9b00974.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2019
Authors
3
Datasets
0
Total Files
0
Language
English
Journal
Inorganic Chemistry
DOI
10.1021/acs.inorgchem.9b00974
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access