RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Life in the ‘charosphere’ – Does biochar in agricultural soil provide a significant habitat for microorganisms?

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2013

Life in the ‘charosphere’ – Does biochar in agricultural soil provide a significant habitat for microorganisms?

0 Datasets

0 Files

English
2013
Soil Biology and Biochemistry
Vol 65
DOI: 10.1016/j.soilbio.2013.06.004

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Davey L Jones
Davey L Jones

Bangor University

Verified
Richard S. Quilliam
Helen Glanville
Stephen C. Wade
+1 more

Abstract

Biochar application has become a novel and emergent technology for sequestering C, improving soil quality and crop production, and is a potential win–win strategy for ecosystem service delivery. Biochar addition can also stimulate soil microbial activity, and although it is unclear exactly why biochar should benefit soil microorganisms, it is thought that the large surface area and volume of pores provide a significant habitat for microbes. The aim of this study was to determine the level of microbial colonisation of wood-derived biochar that had been buried in an agricultural soil for three years. We have examined the level of colonisation on the internal and external surfaces of field-aged biochar by scanning electron microscopy, and used 14C-labelled glucose to quantify the rates of microbial activity in different spatial niches of the biochar and the surrounding soil. Microbial colonisation of field-aged biochar was very sparse, with no obvious differences between the external and internal surfaces. At the high field application rate of 50 t ha−1, biochar contributed only 6.52 ± 0.11% of the total soil pore space and 7.35 ± 0.81% of the total soil surface area of the topsoil (0–30 cm). Further, 17.46 ± 0.02% of the biochar pores were effectively uninhabitable for most microbes, being <1 μm in diameter. The initial rate of microbial mineralization of 14C-labelled glucose was significantly greater in the control bulk soil and the soil immediately surrounding the biochar than on the biochar external and internal surfaces. However, lower C use efficiency values of microbes on, or within, the biochar also suggested lower available C status or differences in the structure of the microbial community in the biochar relative to the surrounding soil. This study suggests that, at least in the short term (≤3 y), biochar does not provide a significant habitat for soil microbes. While biochar is extremely recalcitrant and largely unavailable to soil microbes, changes in soil physicochemical properties and the introduction of metabolically available labile compounds into the surrounding soil (the ‘charosphere’) may significantly alter soil microbial activity and structure, which could ultimately affect soil–plant–microbe interactions. Therefore, before the wide-scale application of biochar to agricultural land is exploited, it is important that we understand further how the properties of biochar positively or negatively affect soil microbial communities, and in turn, how they interact with, and colonise biochar.

How to cite this publication

Richard S. Quilliam, Helen Glanville, Stephen C. Wade, Davey L Jones (2013). Life in the ‘charosphere’ – Does biochar in agricultural soil provide a significant habitat for microorganisms?. Soil Biology and Biochemistry, 65, pp. 287-293, DOI: 10.1016/j.soilbio.2013.06.004.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2013

Authors

4

Datasets

0

Total Files

0

Language

English

Journal

Soil Biology and Biochemistry

DOI

10.1016/j.soilbio.2013.06.004

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access