0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free Access<p>Global peatlands store >600 Gt of Carbon (C) but are highly vulnerable to degradation following drainage for agriculture. The extensively drained East Anglian Fens include half of England’s most productive agricultural land, produce ~33% of England’s vegetables and support a food production industry worth approximately £3 billion GBP.  However under arable management, these fen peat soils produce ~37.5 t CO<sub>2</sub> eq ha<sup>-1</sup> of total greenhouse gas (GHG) emissions annually. This is likely to be the largest source of land use GHG emissions in the UK per unit area and there is interest in developing responsible management approaches to reduce emissions whilst maintaining economically productive systems. Lettuce (Lactuca sativa) is amongst the UK’s most valuable crops and a substantial proportion of UK production occurs in the Fens. We undertook a life cycle assessment to compare the carbon footprint of UK Fen lettuce with alternative sources of lettuce for the UK market. We also examined the potential for responsible peat management strategies and more efficient production to reduce the carbon footprint of Fen lettuce. It is hoped this study will help to inform land use decision making and encourage responsible management of UK lowland peat resources.</p>
Benjamin Freeman, David Styles, Chris Evans, David R. Chadwick, Davey L Jones (2020). Life cycle assessment of horticultural production on UK lowland peat soils.. , DOI: 10.5194/egusphere-egu2020-9662.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2020
Authors
5
Datasets
0
Total Files
0
Language
English
DOI
10.5194/egusphere-egu2020-9662
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access