RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Life cycle assessment of horticultural production on UK lowland peat soils.

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2020

Life cycle assessment of horticultural production on UK lowland peat soils.

0 Datasets

0 Files

English
2020
DOI: 10.5194/egusphere-egu2020-9662

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Davey L Jones
Davey L Jones

Bangor University

Verified
Benjamin Freeman
David Styles
Chris Evans
+2 more

Abstract

<p>Global peatlands store >600 Gt of Carbon (C) but are highly vulnerable to degradation following drainage for agriculture. The extensively drained East Anglian Fens include half of England’s most productive agricultural land, produce ~33% of England’s vegetables and support a food production industry worth approximately £3 billion GBP.  However under arable management, these fen peat soils produce ~37.5 t CO<sub>2</sub> eq ha<sup>-1</sup> of total greenhouse gas (GHG) emissions annually. This is likely to be the largest source of land use GHG emissions in the UK per unit area and there is interest in developing responsible management approaches to reduce emissions whilst maintaining economically productive systems. Lettuce (Lactuca sativa) is amongst the UK’s most valuable crops and a substantial proportion of UK production occurs in the Fens. We undertook a life cycle assessment to compare the carbon footprint of UK Fen lettuce with alternative sources of lettuce for the UK market. We also examined the potential for responsible peat management strategies and more efficient production to reduce the carbon footprint of Fen lettuce. It is hoped this study will help to inform land use decision making and encourage responsible management of UK lowland peat resources.</p>

How to cite this publication

Benjamin Freeman, David Styles, Chris Evans, David R. Chadwick, Davey L Jones (2020). Life cycle assessment of horticultural production on UK lowland peat soils.. , DOI: 10.5194/egusphere-egu2020-9662.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2020

Authors

5

Datasets

0

Total Files

0

Language

English

DOI

10.5194/egusphere-egu2020-9662

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access