0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessPhthalate acid esters (PAEs) are commonly used plastic additives, not chemically bound to the plastic that migrate into surrounding environments, posing a threat to environmental and human health. Dibutyl phthalate (DBP) and di(2-ethylhexyl) phthalate (DEHP) are two common PAEs found in agricultural soils, where degradation is attributed to microbial decomposition. Yet the impact of the plastic matrix on PAE degradation rates is poorly understood. Using 14C-labelled DBP and DEHP we show that migration from the plastic matrix into soil represents a key rate limiting step in their bioavailability and subsequent degradation. Incorporating PAEs into plastic film decreased their degradation in soil, DBP (DEHP) from 79% to 21% (9% to <1%), over four months when compared to direct application of PAEs. Mimicking surface soil conditions, we demonstrated that exposure to ultraviolet radiation accelerated PAE mineralisation twofold. Turnover of PAE was promoted by the addition of biosolids, while the presence of plants and other organic residues failed to promote degradation. We conclude that PAEs persist in soil for longer than previously thought due to physical trapping within the plastic matrix, suggesting PAEs released from plastics over very long time periods lead to increasing levels of contamination.
Samantha J. Viljoen, Francesca L. Brailsford, Daniel V. Murphy, Frances C. Hoyle, David R. Chadwick, Davey L Jones (2022). Leaching of phthalate acid esters from plastic mulch films and their degradation in response to UV irradiation and contrasting soil conditions. Journal of Hazardous Materials, 443, pp. 130256-130256, DOI: 10.1016/j.jhazmat.2022.130256.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2022
Authors
6
Datasets
0
Total Files
0
Language
English
Journal
Journal of Hazardous Materials
DOI
10.1016/j.jhazmat.2022.130256
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access