RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Lattice Boltzmann modeling of the effective thermal conductivity for fibrous materials

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2006

Lattice Boltzmann modeling of the effective thermal conductivity for fibrous materials

0 Datasets

0 Files

English
2006
International Journal of Thermal Sciences
Vol 46 (9)
DOI: 10.1016/j.ijthermalsci.2006.11.006

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Ji-huan He
Ji-huan He

Soochow University

Verified
Moran Wang
Ji-huan He
Jianyong Yu
+1 more

Abstract

This paper presents a full set of numerical methods for predicting the effective thermal conductivity of natural fibrous materials accurately, which includes a random generation-growth method for generating micro morphology of natural fibrous materials based on existing statistical macroscopic geometrical characteristics and a highly efficient lattice Boltzmann algorithm for solving the energy transport equations through the fibrous material with the multiphase conjugate heat transfer effect considered. Using the present method, the effective thermal conductivity of random fibrous materials is analyzed for different parameters. The simulation results indicate that the fiber orientation angle limit will cause the material effective thermal conductivity to be anisotropic and a smaller orientation angle leads to a stronger anisotropy. The effective thermal conductivity of fibrous material increases with the fiber length and approach a stable value when the fiber tends to be infinite long. The effective thermal conductivity increases with the porosity of material at a super-linear rate and differs for different fiber location distribution functions.

How to cite this publication

Moran Wang, Ji-huan He, Jianyong Yu, Ning Pan (2006). Lattice Boltzmann modeling of the effective thermal conductivity for fibrous materials. International Journal of Thermal Sciences, 46(9), pp. 848-855, DOI: 10.1016/j.ijthermalsci.2006.11.006.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2006

Authors

4

Datasets

0

Total Files

0

Language

English

Journal

International Journal of Thermal Sciences

DOI

10.1016/j.ijthermalsci.2006.11.006

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access