0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Join our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThe feedback between soil carbon (C) and climate change has the potential to decrease over time, which is mainly due to the thermal acclimation of microbial decomposition of soil organic matter (SOM). The adaption and stabilization mechanisms of microbial functions in response to long-term warming in agroecosystems, however, remain intensive debate. Therefore, we explored the controls of thermal acclimation based on an 8-year field warming (ambient, +1.6 °C, +3.2 °C) in agroecosystem and a short-term incubation at five constant temperature levels (from 5 to 25 °C with 5 °C intervals) under microbial steady-state (without glucose, non-activated microbial community) and activate microbial growth induced by sufficient glucose addition. At the steady-state, field warming (+3.2 °C) increased the specific growth rate whilst decreased the portion of growing microbial biomass as compared to ambient soils. This indicated that 8-year field warming facilitated the consumption of labile organics due to faster microbial growth. Consequently, microbial growth, activities of β-glucosidase and leucine aminopeptidase, as well as microbial respiration acclimated to field warming (+1.6 °C, +3.2 °C) over 8-year, responded up to 40% weaker to further short-term temperature increase (above 15 °C). Also, the temperature sensitivity of enzyme activity decreased with field warming magnitude under higher incubation temperatures, which further indicated enzyme acclimation. Under activation mode, however, the higher enzyme activities suggested that the increased labile C remarkably relieved the substrate limitation of microbial growth and activated dormant microorganisms in field warmed soils, and weaken the thermal acclimation of soil microbial functions. We thus found experimental evidence that the transition between microbial physiological states (i.e., dormant vs. active) owing to variations in C availability is the most plausible explanation for the alterations in temperature sensitivity of enzyme activities and microbial respiration. The compensating effect of the increased labile substrate under climate warming on the thermal acclimation of soil microbe-driven CO2 may thus be larger than that currently predicted, with important consequences for atmospheric CO2 concentrations.
Jie Zhou, Yuan Wen, Bahar S. Razavi, Sebastian Loeppmann, Miles R. Marshall, Huadong Zang, Yakov Kuzyakov, Zhaohai Zeng, Michaela Dippold, Еvgenia Blagodatskaya (2023). Labile substrate input weakens the memory effect of soil microbial functions under global warming. CATENA, 232, pp. 107381-107381, DOI: 10.1016/j.catena.2023.107381.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2023
Authors
10
Datasets
0
Total Files
0
Language
English
Journal
CATENA
DOI
10.1016/j.catena.2023.107381
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free AccessYes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration