RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Labile carbon inputs offset nitrogen-induced soil aggregate destabilization via enhanced growth of saprophytic fungi in a meadow steppe

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2024

Labile carbon inputs offset nitrogen-induced soil aggregate destabilization via enhanced growth of saprophytic fungi in a meadow steppe

0 Datasets

0 Files

English
2024
Geoderma
Vol 443
DOI: 10.1016/j.geoderma.2024.116841

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Yakov Kuzyakov
Yakov Kuzyakov

Institution not specified

Verified
Ruonan Zhao
Yakov Kuzyakov
Haiyang Zhang
+9 more

Abstract

The formation and stability of soil aggregates affect plant growth, carbon sequestration, and many other physiological and biogeochemical processes. Aggregates may be destabilized by nitrogen (N) deposition due to decreased inputs of binding materials; however, the legacy effects of which are unknown. An increase in labile carbon (C) input could mitigate the negative impacts of N addition on soil aggregate stability through the improvement of soil physical, chemical and biological conditions. Using a field experiment with the addition of NH4NO3 at multiple levels in a meadow steppe, we terminated the addition of N at the sixth year and shifted to applying labile C in the form of sucrose at three levels (C-0, C-200, and C-2000 g C m−2 y−1) to soil for two years. Then we examined the aggregate size distribution and the associated soil properties. The high historical N addition rates decreased the proportion of macroaggregates (>2000 μm) and increased microaggregates (<250 μm), leading to a reduction in the mean weight diameter (MWD), an index of soil aggregation stability. Labile C input offset the legacy effects of N addition on soil aggregates hierarchy and reversed the N-induced changes in MWD. Labile C input did not affect soil pH and exchangeable Ca2+, but increased the microbial biomass carbon (MBC) and the relative abundance of soil saprotrophic fungi (SSF); whilst the C-200 increased the relative abundance of arbuscular mycorrhizal fungi (AMF) only at low N addition rates (<N20) in comparison with that of the C-0. Analysis with the structural equation model (SEM) revealed the positive effects of labile C input on soil aggregate stability mainly by increasing the relative abundance of SSF across all N addition rates. The results of this study clearly demonstrate the effective role of short-term (2 years) labile C input in offsetting the N-caused soil aggregate instability in the meadow steppe by promoting soil microbial activity.

How to cite this publication

Ruonan Zhao, Yakov Kuzyakov, Haiyang Zhang, Z. W. Wang, Tianpeng Li, Lingyu Shao, Liangchao Jiang, Ruzhen Wang, Mai‐He Li, Osbert Jianxin Sun, Yong Jiang, Xingguo Han (2024). Labile carbon inputs offset nitrogen-induced soil aggregate destabilization via enhanced growth of saprophytic fungi in a meadow steppe. Geoderma, 443, pp. 116841-116841, DOI: 10.1016/j.geoderma.2024.116841.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2024

Authors

12

Datasets

0

Total Files

0

Language

English

Journal

Geoderma

DOI

10.1016/j.geoderma.2024.116841

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access