0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessDue to the high maneuverability, flexible deployment, and low cost, unmanned aerial vehicles (UAVs) have attracted significant interest recently in assisting wireless communication. This paper considers a multi-UAV enabled wireless communication system, where multiple UAV-mounted aerial base stations are employed to serve a group of users on the ground. To achieve fair performance among users, we maximize the minimum throughput over all ground users in the downlink communication by optimizing the multiuser communication scheduling and association jointly with the UAV's trajectory and power control. The formulated problem is a mixed integer nonconvex optimization problem that is challenging to solve. As such, we propose an efficient iterative algorithm for solving it by applying the block coordinate descent and successive convex optimization techniques. Specifically, the user scheduling and association, UAV trajectory, and transmit power are alternately optimized in each iteration. In particular, for the nonconvex UAV trajectory and transmit power optimization problems, two approximate convex optimization problems are solved, respectively. We further show that the proposed algorithm is guaranteed to converge. To speed up the algorithm convergence and achieve good throughput, a low-complexity and systematic initialization scheme is also proposed for the UAV trajectory design based on the simple circular trajectory and the circle packing scheme. Extensive simulation results are provided to demonstrate the significant throughput gains of the proposed design as compared to other benchmark schemes.
Qingqing Wu, Yong Zeng, Rui Zhang (2018). Joint Trajectory and Communication Design for Multi-UAV Enabled Wireless Networks. IEEE Transactions on Wireless Communications, 17(3), pp. 2109-2121, DOI: 10.1109/twc.2017.2789293.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2018
Authors
3
Datasets
0
Total Files
0
Language
English
Journal
IEEE Transactions on Wireless Communications
DOI
10.1109/twc.2017.2789293
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access