RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Joint Sum Rate and Blocklength Optimization in RIS-Aided Short Packet URLLC Systems

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2022

Joint Sum Rate and Blocklength Optimization in RIS-Aided Short Packet URLLC Systems

0 Datasets

0 Files

English
2022
IEEE Communications Letters
Vol 26 (8)
DOI: 10.1109/lcomm.2022.3180396

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Matti Latva-aho
Matti Latva-aho

University Of Oulu

Verified
Ramin Hashemi
Samad Ali
Nurul Huda Mahmood
+1 more

Abstract

In this letter, a multi-objective optimization problem (MOOP) is proposed for maximizing the achievable finite blocklength (FBL) rate while minimizing the utilized channel blocklengths (CBLs) in a reconfigurable intelligent surface (RIS)-assisted short packet communication system. The formulated MOOP has two objective functions namely maximizing the total FBL rate with a target error probability, and minimizing the total utilized CBLs which is directly proportional to the transmission duration. The considered MOOP variables are the base station (BS) transmit power, number of CBLs, and passive beamforming at the RIS. Since the proposed non-convex problem is intractable to solve, the Tchebyshev method is invoked to transform it into a single-objective OP, then the alternating optimization (AO) technique is employed to iteratively obtain optimized parameters in three main sub-problems. The numerical results show a fundamental trade-off between maximizing the achievable rate in the FBL regime and reducing the transmission duration. Also, the applicability of RIS technology is emphasized in reducing the utilized CBLs while increasing the achievable rate significantly.

How to cite this publication

Ramin Hashemi, Samad Ali, Nurul Huda Mahmood, Matti Latva-aho (2022). Joint Sum Rate and Blocklength Optimization in RIS-Aided Short Packet URLLC Systems. IEEE Communications Letters, 26(8), pp. 1838-1842, DOI: 10.1109/lcomm.2022.3180396.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2022

Authors

4

Datasets

0

Total Files

0

Language

English

Journal

IEEE Communications Letters

DOI

10.1109/lcomm.2022.3180396

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access