0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessIn this paper, we study the problem of joint inband backhauling and interference mitigation in 5G heterogeneous networks (HetNets) in which a massive multiple-input multipleoutput (MIMO) macro cell base station equipped with a large number of antennas, overlaid with self-backhauled small cells is assumed. This problem is cast as a network utility maximization subject to wireless backhaul constraints. Due to the non-tractability of the problem, we first resort to random matrix theory to get a closed-form expression of the achievable rate and transmit power in the asymptotic regime, i.e., as the number of antennas and users grows large. Subsequently, leveraging the framework of stochastic optimization, the problem is decoupled into dynamic scheduling of macro cell users and backhaul provisioning of small cells as a function of interference and backhaul links. Via simulations, we evaluate the performance gains of our proposed framework under different network architectures and low/high frequency bands. Our proposed HetNet method achieves the achievable average UE throughput of 1.7 Gbps as well as ensures 1 Gbps cell-edge UE throughput when serving 200 UEs per km2 at 28 GHz with 1 GHz bandwidth. In ultra-dense network, the UE throughput at 28 GHz achieves 62x gain as compared to 2.4 GHz.
Trung Kien Vu, Mehdi Bennis, Sumudu Samarakoon, Mérouane Debbah, Matti Latva-aho (2016). Joint In-Band Backhauling and Interference Mitigation in 5G Heterogeneous Networks. arXiv (Cornell University), DOI: 10.48550/arxiv.1604.02750.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Preprint
Year
2016
Authors
5
Datasets
0
Total Files
0
Language
English
Journal
arXiv (Cornell University)
DOI
10.48550/arxiv.1604.02750
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access