0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessIntelligent reflecting surfaces (IRSs) are a promising technology for future-generation wireless networks by extending coverage region to blind spots and increasing mmWave propagation paths in non-line of sight environments. User association (UA) in dense millimeter wave (mmWave) networks is vital to characterizing connections among base stations (BSs) and mobile users for load balancing, interference management, and maximizing network utility. However, it has yet to be examined thoroughly in a multi-IRS-aided network. This paper presents a new UA scheme that takes cell interference into account for a multi-cell mmWave cellular network aided with multiple IRSs. We formulate a network spectral efficiency maximization problem by jointly optimizing active beamforming (AB) at the BSs, passive beamforming (PB) at the IRSs, and user-BS association with consideration of the impact of IRSs. We then propose a computationally efficient iterative algorithm based on alternating optimization (AO) to resolve this intractable mixed-integer non-convex problem. A fractional programming technique is used to optimize active beamforming at the BSs and passive beamforming at the IRSs, and a penalization method combined with successive convex programming is applied for UA optimization, which is shown to reach the optimal solution. Simulation results show significant performance improvements obtained by the proposed algorithm, providing higher spectral efficiency compared to several benchmark algorithms, while having a low computational complexity.
Ehsan Moeen Taghavi, Ramin Hashemi, Alireza Alizadeh, Nandana Rajatheva, Mai Vu, Matti Latva-aho (2023). Joint Active-Passive Beamforming and User Association in IRS-Assisted mmWave Cellular Networks. IEEE Transactions on Vehicular Technology, 72(8), pp. 10448-10461, DOI: 10.1109/tvt.2023.3260922.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2023
Authors
6
Datasets
0
Total Files
0
Language
English
Journal
IEEE Transactions on Vehicular Technology
DOI
10.1109/tvt.2023.3260922
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access