0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessIncreasing organic matter (OM) in soil promotes the delivery of vital ecosystem services, such as improving water retention, decreasing erosion, increasing plant productivity, and mitigating climate change through terrestrial carbon (C) sequestration. The formation of organo-mineral associations through microbial turnover of labile (i.e. easily decomposed) C is a potential pathway of soil C stabilization. However, association of added C with mineral surfaces may be impacted by soil clay content and/or by nutrient availability (due to higher microbial C use efficiency). We added 14C labeled glucose as a model labile substrate together with either ion exchange resin beads (to induce nutrient limitation), water (no additional nutrients), or four increasing concentrations of nitrogen, phosphorus, and sulfur in constant stoichiometric ratios to nine agricultural soils under the same climate and management but along a texture gradient from 3 to 40% clay. The soils with 14C-glucose and a nutrient treatment were incubated for 4 weeks during which the 14C was traced into CO2, microbial biomass, dissolved organic C (DOC), and soil organic C (SOC). Induced nutrient limitation (available C:N ratio around 300:1) reduced mineralization of glucose-derived C, particularly in soils with <15% clay. However, in soils with ≥15% clay, higher microbial biomass allowed for glucose-derived C mineralization despite nutrient limitation. Alleviating the nutrient limitation (available C:N < 50:1) allowed for greater transformation of added C into microbial biomass-C and SOC, particularly in soils with ≥21% clay, although further additions (down to C:N of 11:1) did not result in greater SOC or microbial biomass formation. Except under conditions of nutrient limitation (where C:N > 50:1), soil texture and starting microbial biomass size, not nutrient availability, were the drivers of SOC and microbial biomass formation during the incubation.
Courtney A. Creamer, Davey L Jones, Jeff Baldock, Yichao Rui, Daniel V. Murphy, Frances C. Hoyle, Mark Farrell (2016). Is the fate of glucose-derived carbon more strongly driven by nutrient availability, soil texture, or microbial biomass size?. Soil Biology and Biochemistry, 103, pp. 201-212, DOI: 10.1016/j.soilbio.2016.08.025.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2016
Authors
7
Datasets
0
Total Files
0
Language
English
Journal
Soil Biology and Biochemistry
DOI
10.1016/j.soilbio.2016.08.025
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access