RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Iron mineral type controls organic matter stability and priming in paddy soil under anaerobic conditions

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2024

Iron mineral type controls organic matter stability and priming in paddy soil under anaerobic conditions

0 Datasets

0 Files

English
2024
Soil Biology and Biochemistry
Vol 197
DOI: 10.1016/j.soilbio.2024.109518

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Yakov Kuzyakov
Yakov Kuzyakov

Institution not specified

Verified
Shuang Wang
Wei Gao
Zhi Ma
+9 more

Abstract

Associations of iron (hydr)oxides (FeOx) with organic carbon are vital in regulating the stability of soil organic carbon (SOC). Like SOC, FeOx is chemically dynamic in soils, particularly under anaerobic conditions. However, previous research has not clarified how the stability of FeOx (goethite versus ferrihydrite) and the formation pathway of FeOx-OC associations (adsorption versus coprecipitation) affect the stability of FeOx-bound OC and, subsequently, the priming effect (PE) under anaerobic conditions. With an aim to bridge this gap, we incubated paddy soils for 80 d under anaerobic conditions after adding free 13C-glucose, ferrihydrite- or goethite-bound 13C-glucose formed by either adsorption or coprecipitation. Compared with the free glucose addition, the FeOx-bound glucose addition increased 13CO2 production by 8%–21% but reduced 13C–CH4 production by 7%–10%. Ferrihydrite-bound glucose was mineralised more than goethite-bound glucose; this is consistent with its lower crystallinity facilitating reduction and, thus, higher OC bioavailability. Glucose induced a negative priming effect (PE) for CO2 but a positive PE for CH4, whereas FeOx-bound glucose showed the opposite trend. This may be because FeOx-bound glucose provides an energy source and electron acceptor for Fe-reducing bacteria; this promotes the dissimilating reduction of iron and combines with an aggravated microbial P limitation resulting from the FeOx input. The crystallinity of FeOx affected the amount of primed CH4 rather than its formation pathway. In conclusion, the crystallinity of FeOx controls the stability of FeOx-OC associations and the PE of SOC decomposition under anaerobic conditions.

How to cite this publication

Shuang Wang, Wei Gao, Zhi Ma, Zhenke Zhu, Yu Luo, Liang Wei, Hongzhao Yuan, Chen Song, Chaoyun Ying, Kyle Mason‐Jones, Yakov Kuzyakov, Tida Ge (2024). Iron mineral type controls organic matter stability and priming in paddy soil under anaerobic conditions. Soil Biology and Biochemistry, 197, pp. 109518-109518, DOI: 10.1016/j.soilbio.2024.109518.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2024

Authors

12

Datasets

0

Total Files

0

Language

English

Journal

Soil Biology and Biochemistry

DOI

10.1016/j.soilbio.2024.109518

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access