0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessHerein, we utilize a variety of physical methods including magnetometry (SQUID), electron paramagnetic resonance (EPR), and magnetic circular dichroism (MCD), in conjunction with high-level ab initio theory to probe both the ground and ligand-field excited electronic states of a series of V(IV) ( S = 1/2) and V(III) ( S = 1) molecular complexes. The ligand fields of the central metal ions are analyzed with the aid of ab initio ligand-field theory (AILFT), which allows for a chemically meaningful interpretation of multireference electronic structure calculations at the level of the complete-active-space self-consistent field with second-order N-electron valence perturbation theory. Our calculations are in good agreement with all experimentally investigated observables (magnetic properties, EPR, and MCD), making our extracted ligand-field theory parameters realistic. The ligand fields predicted by AILFT are further analyzed with conventional angular overlap parametrization, allowing the ligand field to be decomposed into individual σ- and π-donor contributions from individual ligands. The results demonstrate in VO2+ complexes that while the axial vanadium-oxo interaction dominates both the ground- and excited-state properties of vanadyl complexes, proximal coordination can significantly modulate the vanadyl bond covalency. Similarly, the electronic properties of V(III) complexes are particularly sensitive to the available σ and π interactions with the surrounding ligands. The results of this study demonstrate the power of AILFT-based analysis and provide the groundwork for the future analysis of vanadium centers in homogeneous and heterogeneous catalysts.
Casey Van Stappen, Dimitrios Maganas, Serena DeBeer, Eckhard Bill, Frank Neese (2018). Investigations of the Magnetic and Spectroscopic Properties of V(III) and V(IV) Complexes. Inorganic Chemistry, 57(11), pp. 6421-6438, DOI: 10.1021/acs.inorgchem.8b00486.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2018
Authors
5
Datasets
0
Total Files
0
Language
English
Journal
Inorganic Chemistry
DOI
10.1021/acs.inorgchem.8b00486
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access