RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Interictal discharges spread along local recurrent networks between tubers and surrounding cortex

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Preprint
en
2019

Interictal discharges spread along local recurrent networks between tubers and surrounding cortex

0 Datasets

0 Files

en
2019
DOI: 10.1101/691170

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Karl Friston
Karl Friston

University College London

Verified
S. Tumpa
John S. Thornton
Martin Tisdall
+3 more

Abstract

Abstract The presence of interictal epileptiform discharges on electroencephalography (EEG) may indicate increased epileptic seizure risk and on invasive EEG are the signature of the irritative zone. In highly epileptogenic lesions – such as cortical tubers in tuberous sclerosis – these discharges can be recorded with intracranial stereotactic EEG as part of the evaluation for epilepsy surgery. Yet the network mechanisms that underwrite the generation and spread of these discharges remain poorly understood, limiting their current diagnostic use. Here, we investigate the dynamics of interictal epileptiform discharges using a combination of quantitative analysis of invasive EEG recordings and mesoscale neural mass modelling of cortical dynamics. We first characterise spatially organised local dynamics of discharges recorded from 36 separate tubers in 8 patients with tuberous sclerosis. We characterise these dynamics with a set of competing explanatory network models using dynamic causal modelling. Bayesian model comparison of plausible network architectures suggests that the recurrent coupling between neuronal populations within – and adjacent to – the tuber core explains the travelling wave dynamics observed in these patient recordings. Our results – based on interictal activity – unify competing theories about the pathological organisation of epileptic foci and surrounding cortex in patients with tuberous sclerosis. Coupled oscillator dynamics have previously been used to describe ictal activity, where fast travelling ictal discharges are commonly observed within the recruited seizure network. The interictal data analysed here add the insight that this functional architecture is already established in the interictal state. This links observations of interictal EEG abnormalities directly to pathological network coupling in epilepsy, with possible implications for epilepsy surgery approaches in tuberous sclerosis. Significance Statement Interictal epileptiform discharges (IEDs) are clinically important markers of an epileptic brain. Here we link local IED spread to network coupling through a combination of clinical recordings in paediatric patients with tuberous sclerosis complex, quantitative EEG analysis of interictal discharges spread, and Bayesian inference on coupled neural mass model parameters. We show that the kinds of interictal discharges seen in our patients require recurrent local network coupling extending beyond the putative seizure focus and that in fact only those recurrent coupled networks can support seizure-like and interictal dynamics when run in simulation. Our findings provide a novel integrated perspective on emergent epileptic dynamics in human patients.

How to cite this publication

S. Tumpa, John S. Thornton, Martin Tisdall, Torsten Baldeweg, Karl Friston, Richard Rosch (2019). Interictal discharges spread along local recurrent networks between tubers and surrounding cortex. , DOI: https://doi.org/10.1101/691170.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Preprint

Year

2019

Authors

6

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1101/691170

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access