0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessBiological nitrogen fixation (BNF) is strongly affected by the carbon (C) and nitrogen (N) stoichiometry in soil and depends on the input of organic C. Due to the high metabolic costs of nitrogenase activity, however, the response of BNF to organic C input and its impact on microbial turnover remain unclear. To address this knowledge gap, we combined 15N2 tracing with high-throughput sequencing by adding glucose or glucose plus mineral N fertilizer for a 12-day incubation in three cropland soils. Glucose addition alone strongly changed the BNF activity (0.76–2.51 mg N kg−1 d−1), while BNF was completely absent after mineral N fertilization. This switch-on of BNF by glucose addition supported equally high rates of microbial growth and organic C mineralization compared with the direct mineral N assimilation by microorganisms. Glucose-induced BNF was predominantly catalyzed by Azotobacter-affiliated free-living diazotrophs (>50 % of the total nifH genes), which increased with diverse nondiazotrophs such as Nitrososphaera, Bacillus and Pseudoxanthomonas. Structural equation models (SEMs) and random forest (RF) analyses consistently revealed that the soil C:N ratio and Azotobacter-affiliated diazotrophic abundances were the key factors affecting glucose-induced BNF. Our findings emphasize the importance of free-living diazotrophs for microbial turnover of organic C in soil.
Wei Gao, Jun Zhao, Xiaobin Guo, Fang Wang, Xiangbi Chen, Zhenke Zhu, Tida Ge, Lianfeng Wang, Yakov Kuzyakov, Jinshui Wu, Zhongjun Jia (2024). Intensive N2 fixation accelerates microbial turnover in cropland soils. The Science of The Total Environment, 916, pp. 170081-170081, DOI: 10.1016/j.scitotenv.2024.170081.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2024
Authors
11
Datasets
0
Total Files
0
Language
English
Journal
The Science of The Total Environment
DOI
10.1016/j.scitotenv.2024.170081
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access