RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Intelligent Reflecting Surface-Enhanced OFDM: Channel Estimation and Reflection Optimization

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2019

Intelligent Reflecting Surface-Enhanced OFDM: Channel Estimation and Reflection Optimization

0 Datasets

0 Files

English
2019
IEEE Wireless Communications Letters
Vol 9 (4)
DOI: 10.1109/lwc.2019.2961357

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Rui Zhang
Rui Zhang

The Chinese University of Hong Kong

Verified
Beixiong Zheng
Rui Zhang

Abstract

In the intelligent reflecting surface (IRS)-enhanced wireless communication system, channel state information (CSI) is of paramount importance for achieving the passive beamforming gain of IRS, which, however, is a practically challenging task due to its massive number of passive elements without transmitting/receiving capabilities. In this letter, we propose a practical transmission protocol to execute channel estimation and reflection optimization successively for an IRS-enhanced orthogonal frequency division multiplexing (OFDM) system. Under the unit-modulus constraint, a novel reflection pattern at the IRS is designed to aid the channel estimation at the access point (AP) based on the received pilot signals from the user, for which the channel estimation error is derived in closed-form. With the estimated CSI, the reflection coefficients are then optimized by a low-complexity algorithm based on the resolved strongest signal path in the time domain. Simulation results corroborate the effectiveness of the proposed channel estimation and reflection optimization methods.

How to cite this publication

Beixiong Zheng, Rui Zhang (2019). Intelligent Reflecting Surface-Enhanced OFDM: Channel Estimation and Reflection Optimization. IEEE Wireless Communications Letters, 9(4), pp. 518-522, DOI: 10.1109/lwc.2019.2961357.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2019

Authors

2

Datasets

0

Total Files

0

Language

English

Journal

IEEE Wireless Communications Letters

DOI

10.1109/lwc.2019.2961357

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access