0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessHeat dissipation is a key issue for scaling metal-oxide-semiconductor field-effect transistors (MOSFETs). The Boltzmann distribution of electrons imposes a physical limit on the subthreshold swing (SS), which impedes both the reduction of the switching energy and the further increase of the device density. The negative capacitance effect is proposed to rescue MOSFETs from this phenomenon called "Boltzmann tyranny". Herein, we report In2O3 nanowire (NW) transistors with SS values in the sub-60 mV/dec region, which utilize the ferroelectric P(VDF-TrFE) as the dielectric layer. An ultralow SS down to ∼10 mV/dec is observed and spans over 5 orders of magnitude in the drain current. Meanwhile, a high on/off ratio of more than 108 and a transconductance ( gm) of 2.3 μS are obtained simultaneously at Vd = 0.1 V. The results can be understood by the "voltage amplification" effect induced from the negative capacitance effect. Moreover, the steep slope FET-based inverters indicate a high voltage gain of 41.6. In addition to the NOR and NAND gates, the Schmitt trigger inverters containing only one steep slope FET are demonstrated. This work demonstrates an avenue for low-power circuit design with a steep SS.
Qian Xu, Xingqiang Liu, Bensong Wan, Zheng Yang, Fangtao Li, Junfeng Lu, Guofeng Hu, Caofeng Pan, Zhong Lin Wang (2018). In<sub>2</sub>O<sub>3</sub> Nanowire Field-Effect Transistors with Sub-60 mV/dec Subthreshold Swing Stemming from Negative Capacitance and Their Logic Applications. , 12(9), DOI: https://doi.org/10.1021/acsnano.8b05604.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2018
Authors
9
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1021/acsnano.8b05604
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access