0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessRhizodeposition represents a readily available C and energy source for soil microorganisms, that plays an important role in the regulation of C and nutrient cycling in ecosystems and exerts a strong influence on C sequestration. The dynamics of rice rhizo-C in soils and its allocation to microorganisms during rice growth, as well as the effects of nitrogen (N-NH4 +) fertilization are poorly understood, particularly with respect to the initial uptake of rhizo-C by microorganisms and its utilization during the entire growth period. To assess these two processes, rice plants were grown in pots with or without N fertilization (0 and 225 kg N-NH4 + ha−1), and 13C incorporation into microbial groups was traced by phospholipid fatty acids (PLFAs) analysis within 6 h after 13CO2 pulse labeling. Labeling was performed at five growth stages: tillering, elongation, heading, filling, and maturation. 13C incorporated into soil microbial biomass C changed rapidly at the beginning of the study period, before elongation, but remained stable thereafter. 13C incorporation into rhizosphere and bulk soil microbial biomass was higher with than without N addition. This stimulation was likely due to the excessive increase in phytomass formation and root exudates after N fertilization and the increased assimilate C input into the soil. Structural equation modelling suggested that N fertilization strongly affected carbon transfer between rhizosphere and non-rhizosphere. Hence, N-NH4 + application may not only increase rhizo-C flow into microorganisms but it may also increase the effect of rhizosphere on bulk-soil microorganisms and subsequent processes related to soil C-cycling.
Yalong Liu, Tida Ge, Jun Ye, Shoulong Liu, Olga Shibistova, Ping Wang, Jingkuan Wang, Yong Li, Georg Guggenberger, Yakov Kuzyakov, Jinshui Wu (2018). Initial utilization of rhizodeposits with rice growth in paddy soils: Rhizosphere and N fertilization effects. Geoderma, 338, pp. 30-39, DOI: 10.1016/j.geoderma.2018.11.040.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2018
Authors
11
Datasets
0
Total Files
0
Language
English
Journal
Geoderma
DOI
10.1016/j.geoderma.2018.11.040
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access