0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free Access[1] Material juxtapositions across mature faults are a common occurrence. Previous work has found that this elastic mismatch results in a rupture that will preferentially propagate in the direction of slip displacement on the more compliant side of the fault, with more off-fault damage in the stiffer material. This result has implications for inferring preferred rupture directions based on observations of damage zone asymmetry. We perform a complete numerical investigation of the role of the stress state on the distribution of plastic deformation and the direction of preferred rupture propagation. We show that there are important factors, in addition to the elastic mismatch, which control the preferred direction of propagation as well as the side of the fault in which damage predominately accumulates. The orientation of the most compressive principal stress is the controlling factor in determining the location of plastic deformation. For different orientations, plastic deformation can accumulate in either the stiffer or the more compliant material. For high angles of most compressive stress, the aforementioned preferred rupture direction prediction holds true. However, the off-fault plastic response can reverse that direction for low angles of most compressive stress so that rupture will preferentially propagate in the direction of slip displacement in the stiffer material.
N. Dedontney, Elizabeth L. Templeton-Barrett, James R. Rice, Renata Dmowska (2011). Influence of plastic deformation on bimaterial fault rupture directivity. Journal of Geophysical Research Atmospheres, 116(B10), DOI: 10.1029/2011jb008417.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2011
Authors
4
Datasets
0
Total Files
0
Language
English
Journal
Journal of Geophysical Research Atmospheres
DOI
10.1029/2011jb008417
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access