0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessCopper-exchanged zeolites are well-known catalysts for the selective catalytic reduction of nitrogen oxides by ammonia (NH3-SCR). To determine the influence of framework stability on catalyst deactivation, two zeolite frameworks, MFI and IMF, were used in this study. The two frameworks have similar window size and connectivities, but the IMF structure is less susceptible towards dealumination. In each zeolite, copper was introduced by aqueous exchange and the catalytic performance in the NH3-SCR reaction compared before and after hydrothermal ageing at 650 and 750°C. The changes in state and local environment of Cu and the degradation of the zeolite structure were characterized using ammonia capacity measurements, solid state nuclear magnetic resonance, X-ray fine structure spectroscopy, temperature programmed reduction with hydrogen, infrared spectroscopy monitoring of adsorbed NO and CO probe molecules as well as the combination of transmission electron microscopy and energy dispersive X-ray spectroscopy to follow copper migration. The catalytic performance of Cu-ZSM-5 and Cu-IM-5 is similar in the fresh state, but after hydrothermal ageing the deactivation of Cu-IM-5 is less severe compared to Cu-ZSM-5 as a consequence of the higher framework stability. The changes in catalyst structure that occur during ageing are (i) partial dealumination of the zeolite, (ii) reversible migration of copper species, and (iii) irreversible formation of catalytically inactive and stable Cu–Al clusters, which have some resemblance to CuAl2O4, but without the symmetry of Cu in the spinel structure. As the Cu–Al clusters only form once Al is detached from the framework, the stability of Al in the zeolite framework is proposed to dictate the overall hydrothermal deactivation behaviour of Cu-ZSM-5 and Cu-IM-5 in the NH3-SCR reaction.
Peter N. R. Vennestrøm, Ton V. W. Janssens, A.L. Kustov, Marie Grill, A. Puig-Molina, L. F. Lundegaard, Ramchandra R. Tiruvalam, Patricia Concepción, Avelino Avelino (2013). Influence of lattice stability on hydrothermal deactivation of Cu-ZSM-5 and Cu-IM-5 zeolites for selective catalytic reduction of NOx by NH3. Journal of Catalysis, 309, pp. 477-490, DOI: 10.1016/j.jcat.2013.10.017.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2013
Authors
9
Datasets
0
Total Files
0
Language
English
Journal
Journal of Catalysis
DOI
10.1016/j.jcat.2013.10.017
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access