0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessBiochar amendments add persistent organic carbon to soil and can stabilize rhizodeposits and existing soil organic carbon (SOC), but effects of biochar on subsoil carbon stocks have been overlooked. We quantified changes in soil inorganic carbon (SIC) and SOC to 2 m depth 10 years after biochar application to calcareous soil. The total soil carbon (i.e., existing SOC, SIC, and biochar-C) increased by 71, 182, and 210% for B30, B60, and B90, respectively. Biochar application at 30, 60, and 90 t ha-1 rates significantly increased SIC by 10, 38, and 68 t ha-1, respectively, with accumulation mainly occurring in the subsoil (below 1 m). This huge increase of SIC (mainly CaCO3) is ∼100 times larger than the inorganic carbon present in the added biochar (0.3, 0.6, or 0.9 t ha-1). The benzene polycarboxylic acid method showed that the biochar-amended soil contained more black carbon particles (6.8 times higher than control soil) in the depth of 1.4-1.6 m, which provided the direct quantitative evidence for biochar migration into subsoil after a decade. Spectral and energy spectrum analysis also showed an obvious biochar structure in the biochar-amended subsoil, accompanied by a Ca/Mg carbonate cluster, which provided further evidence for downward migration of biochar after a decade. To explain SIC accumulation in subsoil with biochar amendment, the interacting mechanisms are proposed: (1) biochar amendment significantly increases subsoil pH (0.3-0.5 units) 10 years after biochar application, thus forming a favorable pH environment in the subsoil to precipitate HCO3-; and (2) the transported biochar in subsoil can act as nuclei to precipitate SIC. Biochar amendment enhanced SIC by up to 80%; thus, the effects on carbon stocks in subsoil must be understood to inform strategies for carbon dioxide removal through biochar application. Our study provided critical knowledge on the impact of biochar application to topsoil on carbon stocks in subsoil in the long term.
Yang Wang, Stephen Joseph, Xiang Wang, Zhe Weng, David R. G. Mitchell, Mitchell Nancarrow, Sarasadat Taherymoosavi, Paul Munroe, Guitong Li, Qimei Lin, Qing Chen, Markus Flury, Annette Cowie, Olivier Husson, Lukas Van Zwieten, Yakov Kuzyakov, Johannes Lehmann, Baoguo Li, Jianying Shang (2023). Inducing Inorganic Carbon Accrual in Subsoil through Biochar Application on Calcareous Topsoil. Environmental Science & Technology, 57(4), pp. 1837-1847, DOI: 10.1021/acs.est.2c06419.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2023
Authors
19
Datasets
0
Total Files
0
Language
English
Journal
Environmental Science & Technology
DOI
10.1021/acs.est.2c06419
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access