RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Increasing the light extraction and longevity of TMDC monolayers using liquid formed micro-lenses

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2016

Increasing the light extraction and longevity of TMDC monolayers using liquid formed micro-lenses

0 Datasets

0 Files

English
2016
2D Materials
Vol 4 (1)
DOI: 10.1088/2053-1583/4/1/015032

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Konstantin ‘kostya’  Novoselov
Konstantin ‘kostya’ Novoselov

The University of Manchester

Verified
Christopher Woodhead
Jonathan Roberts
Yasir J. Noori
+6 more

Abstract

The recent discovery of semiconducting two-dimensional materials has led to the prediction of a revolution in the field of optoelectronics, driven by the introduction of a series of new components that are just a few atoms thick. Key remaining challenges for producing practical devices from these materials lie in improving the coupling of light into and out of single atomic layers, and in making these layers robust to the influence of their surrounding environment. We present a solution to tackle both of these problems simultaneously, by deterministically placing a micro-lens directly onto the surface of these materials. These lenses are dynamically tuned to increase the coupling of light, whilst controlling chromatic aberration, before being set in place with UV light. We show that this approach enhances photoluminescence of tungsten diselenide (WSe2) monolayers by up to 300%, and nearly doubles the imaging resolution of the system. Furthermore, this solution fully encapsulates the monolayer, preventing it from physical damage and degradation in air. The optical solution we have developed could become a key enabling technology for the mass production of ultra-thin optical devices, such as quantum light emitting diodes.

How to cite this publication

Christopher Woodhead, Jonathan Roberts, Yasir J. Noori, Yameng Cao, Ramón Bernardo Gavito, Peter D. Tovee, Aleksey Kozikov, Konstantin ‘kostya’ Novoselov, Robert J. Young (2016). Increasing the light extraction and longevity of TMDC monolayers using liquid formed micro-lenses. 2D Materials, 4(1), pp. 015032-015032, DOI: 10.1088/2053-1583/4/1/015032.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2016

Authors

9

Datasets

0

Total Files

0

Language

English

Journal

2D Materials

DOI

10.1088/2053-1583/4/1/015032

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access