0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessSimple consensus methods are often used in crowdsourcing studies to label cases when data are provided by multiple contributors. A basic majority vote rule is often used. This approach weights the contributions from each contributor equally but the contributors may vary in the accuracy with which they can label cases. Here, the potential to increase the accuracy of crowdsourced data on land cover identified from satellite remote sensor images through the use of weighted voting strategies is explored. Critically, the information used to weight contributions based on the accuracy with which a contributor labels cases of a class and the relative abundance of class are inferred entirely from the contributed data only via a latent class analysis. The results show that consensus approaches do yield a classification that is more accurate than that achieved by any individual contributor. Here, the most accurate individual could classify the data with an accuracy of 73.91% while a basic consensus label derived from the data provided by all seven volunteers contributing data was 76.58%. More importantly, the results show that weighting contributions can lead to a statistically significant increase in the overall accuracy to 80.60% by ignoring the contributions from the volunteer adjudged to be the least accurate in labelling.
Giles Foody, Linda See, Steffen Fritz, Inian Moorthy, Christoph Perger, Christian Schill, Doreen S. Boyd (2018). Increasing the Accuracy of Crowdsourced Information on Land Cover via a Voting Procedure Weighted by Information Inferred from the Contributed Data. ISPRS International Journal of Geo-Information, 7(3), pp. 80-80, DOI: 10.3390/ijgi7030080.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2018
Authors
7
Datasets
0
Total Files
0
Language
English
Journal
ISPRS International Journal of Geo-Information
DOI
10.3390/ijgi7030080
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access