0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessCoastal wetlands contain very large carbon (C) stocks—termed as blue C—and their management has emerged as a promising nature‐based solution for climate adaptation and mitigation. The interactions among sources, pools, and molecular compositions of soil organic C (SOC) within blue C ecosystems (BCEs) remain elusive. Here, we explore these interactions along an 18,000 km long coastal line of salt marshes, mangroves, and seagrasses in China. We found that mineral‐associated organic C (MAOC) is enriched in BCEs dominated by allochthonous inputs and abundant active minerals, leading to an increased proportion of persistent organic molecules. Specifically, soils with large allochthonous inputs (> 50%) are characterized by a substantial contribution of MAOC (> 70%) to total SOC with a notable preservation of lipids (36%) across salt marshes, mangroves, and seagrasses. The burial of allochthonous particles, derived from external sources such as rivers or tidal influxes, facilitates the formation of stable MAOC through binding to mineral surfaces or occlusion within microaggregates. The proportions of particulate organic C (POC) and MAOC are important predictors for molecular compositions of soil organic matter. Lipid proportions within molecular composition decrease as POC and autochthonous C proportions increase. These findings provide new insights into the coupled control over SOC sequestration in BCEs, emphasizing the role of allochthonous inputs, proportions of carbon pools, and persistent organic components.
Yuan Li, Chuancheng Fu, Chenglong Ye, Zhaoliang Song, Yakov Kuzyakov, Tony Vancov, Laodong Guo, Zhongkui Luo, Lukas Van Zwieten, Yidong Wang, Yu Luo, Weiqi Wang, Lin Zeng, Guangxuan Han, Hailong Wang, Yongming Luo (2025). Increased Mineral‐Associated Organic Carbon and Persistent Molecules in Allochthonous Blue Carbon Ecosystems. Global Change Biology, 31(1), DOI: 10.1111/gcb.70019.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2025
Authors
16
Datasets
0
Total Files
0
Language
English
Journal
Global Change Biology
DOI
10.1111/gcb.70019
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access