0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessChromium (Cr)-coated Zircaloy fuel cladding has been considered a promising candidate materials system for accident tolerant fuels. In this work, two types of Cr coatings produced by cold sprayed (CS) and physical vapour deposited (PVD) methods were studied. In particular, a novel combination of C-ring compression tests at room temperature (RT) and 345°C in an inert gas environment and real-time X-ray micro-computed tomography (XCT) imaging was adopted to investigate the failure processes. Before testing, the crystal structure and local properties were fully characterized; post testing, ex situ scanning electron microscope (SEM) imaging were conducted to complement the XCT measurements in crack density. It was found that the failure processes in both coatings vary with temperature, as discussed in detail. The hoop strength of first coating cracks' formation of CS materials were higher than the PVD materials due to their higher interfacial roughness and distribution of splatted grains inside CS coating. Based on a calculation of the first Dundurs' parameter from the measured local properties and observed crack arrest/deflection at coating/substrate interface, it was found that the cold sprayed coating-cladding material system has a higher interfacial toughness in terms of critical strain energy release rate due to its interlocking interfacial structure.
Guanjie Yuan, J. Paul Forna-Kreutzer, Jon Ell, Harold Barnard, Benjamin Maier, Edward J. Lahoda, Jorie Walters, Robert O. Ritchie, Dong Liu (2023). In situ X-ray computed micro-tomography imaging of failure processes in Cr-coated Zircaloy nuclear fuel cladding materials. Materials & Design, 234, pp. 112373-112373, DOI: 10.1016/j.matdes.2023.112373.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2023
Authors
9
Datasets
0
Total Files
0
Language
English
Journal
Materials & Design
DOI
10.1016/j.matdes.2023.112373
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access