RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Improving Human Activity Recognition with Wearable Sensors through BEE: Leveraging Early Exit and Gradient Boosting

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2024

Improving Human Activity Recognition with Wearable Sensors through BEE: Leveraging Early Exit and Gradient Boosting

0 Datasets

0 Files

en
2024
Vol 32
Vol. 32
DOI: 10.1109/tnsre.2024.3457830

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Aiguo Song
Aiguo Song

Institution not specified

Verified
Jianglai Yu
Lei Zhang
Dongzhou Cheng
+3 more

Abstract

Early-exiting has recently provided an ideal solution for accelerating activity inference by attaching internal classifiers to deep neural networks. It allows easy activity samples to be predicted at shallower layers, without executing deeper layers, hence leading to notable adaptiveness in terms of accuracy-speed trade-off under varying resource demands. However, prior most works typically optimize all the classifiers equally on all types of activity data. As a result, deeper classifiers will only see hard samples during test phase, which renders the model suboptimal due to the training-test data distribution mismatch. Such issue has been rarely explored in the context of activity recognition. In this paper, to close the gap, we propose to organize all these classifiers as a dynamic-depth network and jointly optimize them in a similar gradient-boosting manner. Specifically, a gradient-rescaling is employed to bound the gradients of parameters at different depths, that makes such training procedure more stable. Particularly, we perform a prediction reweighting to emphasize current deep classifier while weakening the ensemble of its previous classifiers, so as to relieve the shortage of training data at deeper classifiers. Comprehensive experiments on multiple HAR benchmarks including UCI-HAR, PAMAP2, UniMiB-SHAR, and USC-HAD verify that it is state-of-the-art in accuracy and speed. A real implementation is measured on an ARM-based mobile device.

How to cite this publication

Jianglai Yu, Lei Zhang, Dongzhou Cheng, Wenbo Huang, Hao Wu, Aiguo Song (2024). Improving Human Activity Recognition with Wearable Sensors through BEE: Leveraging Early Exit and Gradient Boosting. , 32, DOI: https://doi.org/10.1109/tnsre.2024.3457830.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2024

Authors

6

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1109/tnsre.2024.3457830

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access