RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Improved Output Performance of Triboelectric Nanogenerator by Fast Accumulation Process of Surface Charges

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2021

Improved Output Performance of Triboelectric Nanogenerator by Fast Accumulation Process of Surface Charges

0 Datasets

0 Files

en
2021
Vol 11 (14)
Vol. 11
DOI: 10.1002/aenm.202100050

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Zhong Lin Wang
Zhong Lin Wang

Beijing Institute of Technology

Verified
Yanhong Li
Zhihao Zhao
Lu Liu
+7 more

Abstract

Abstract As a promising energy harvesters, triboelectric nanogenerators (TENG) can be utilized to convert distributed energy into electric power, but the slow charge accumulation incorporated with the inevitable charge decay/leakage of conventional TENGs result in a low surface charge density and an inferior output performance, limiting their practical applications. Here, an effective strategy is proposed to realize high charge density by using a fast charge accumulation process on dielectric material with high relative permittivity. As a result, the charge density is tremendously improved to 2.20 mC m −2 on the poly(vinylidene fluoride‐trifluoroethylene) film. Meanwhile, the fast charge accumulation is highly conducive to reach a high charge density of 1.30 mC m −2 in a 90% relative humidity environment, which is ≈260 times that of a TENG with slow charge accumulation. This work not only provides a new insight into charge accumulation and equilibrium state, but also provides significant guidance on the performance optimization of TENG.

How to cite this publication

Yanhong Li, Zhihao Zhao, Lu Liu, Linglin Zhou, Di Liu, Shaoxin Li, Shengyang Chen, Yejing Dai, Jie Wang, Zhong Lin Wang (2021). Improved Output Performance of Triboelectric Nanogenerator by Fast Accumulation Process of Surface Charges. , 11(14), DOI: https://doi.org/10.1002/aenm.202100050.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2021

Authors

10

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1002/aenm.202100050

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access