0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free Access. Gross primary production (GPP) is the process by which carbon enters ecosystems. Diagnostic models, based on the theory of light use efficiency (LUE) have emerged as one method to estimate ecosystem GPP. However, problems have been noted particularly when applying global results at regional levels. We hypothesize that accounting for non-linear light response and temperature acclimation of daily GPP in boreal regions will improve model performance. To test this hypothesis, we have chosen four diagnostic models for comparison, namely: an LUE model (linear in its light response) both with and without temperature acclimation and an LUE model and a big leaf model both with temperature acclimation and non-linear in their light response. All models include environmental modifiers for temperature and vapour pressure deficit (VPD). Initially, all models were calibrated against four eddy covariance sites within Russia for the years 2002–2004, for a total of 10 site years. Model evaluation was performed via 10-out cross-validation. This study presents a methodology for comparing diagnostic modeling approaches. Cross validation clearly demonstrates the improvement in model performance that temperature acclimation makes in modeling GPP at strongly temperature controlled sites in Russia. Additionally, the inclusion of a non-linear light response function is shown to further improve performance. Furthermore we demonstrate the parameterization of the big leaf model, incorporating environmental modifiers for temperature and VPD.
Ian McCallum, Oskar Franklin, Elena Moltchanova, Lutz Merbold, C. Schmullius, А. Shvidenko, Dmitry Schepaschenko, Steffen Fritz (2013). Improved light and temperature responses for light use efficiency based GPP models. , DOI: 10.5194/bgd-10-8919-2013.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Preprint
Year
2013
Authors
8
Datasets
0
Total Files
0
Language
English
DOI
10.5194/bgd-10-8919-2013
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access