0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThis article examines the exponential stability analysis problem of generalized neural networks (GNNs) including interval time-varying delayed states. A new improved exponential stability criterion is presented by establishing a proper Lyapunov–Krasovskii functional (LKF) and employing new analysis theory. The improved reciprocally convex combination (RCC) and weighted integral inequality (WII) techniques are utilized to obtain new sufficient conditions to ascertain the exponential stability result of such delayed GNNs. The superiority of the obtained results is clearly demonstrated by numerical examples.
Grienggrai Rajchakit, Ramasamy Saravanakumar, Choon Ki Ahn, Hamid Reza Karimi (2016). Improved exponential convergence result for generalized neural networks including interval time-varying delayed signals. Neural Networks, 86, pp. 10-17, DOI: 10.1016/j.neunet.2016.10.009.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2016
Authors
4
Datasets
0
Total Files
0
Language
English
Journal
Neural Networks
DOI
10.1016/j.neunet.2016.10.009
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access