RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Importance of internal variability for climate model assessment

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2023

Importance of internal variability for climate model assessment

0 Datasets

0 Files

English
2023
npj Climate and Atmospheric Science
Vol 6 (1)
DOI: 10.1038/s41612-023-00389-0

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Kevin E Trenberth
Kevin E Trenberth

National Center For Atmospheric Research

Verified
Shipra Jain
Adam A. Scaife
Theodore G. Shepherd
+5 more

Abstract

Benchmarking climate model simulations against observations of the climate is core to the process of building realistic climate models and developing accurate future projections. However, in many cases, models do not match historical observations, particularly on regional scales. If there is a mismatch between modeled and observed climate features, should we necessarily conclude that our models are deficient? Using several illustrative examples, we emphasize that internal variability can easily lead to marked differences between the basic features of the model and observed climate, even when decades of model and observed data are available. This can appear as an apparent failure of models to capture regional trends or changes in global teleconnections, or simulation of extreme events. Despite a large body of literature on the impact of internal variability on climate, this acknowledgment has not yet penetrated many model evaluation activities, particularly for regional climate. We emphasize that using a single or small ensemble of simulations to conclude that a climate model is in error can lead to premature conclusions on model fidelity. A large ensemble of multidecadal simulations is therefore needed to properly sample internal climate variability in order to robustly identify model deficiencies and convincingly demonstrate progress between generations of climate models.

How to cite this publication

Shipra Jain, Adam A. Scaife, Theodore G. Shepherd, Clara Deser, Nick Dunstone, Gavin A. Schmidt, Kevin E Trenberth, Thea Turkington (2023). Importance of internal variability for climate model assessment. npj Climate and Atmospheric Science, 6(1), DOI: 10.1038/s41612-023-00389-0.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2023

Authors

8

Datasets

0

Total Files

0

Language

English

Journal

npj Climate and Atmospheric Science

DOI

10.1038/s41612-023-00389-0

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access