RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Implantable, Biodegradable, and Wireless Triboelectric Devices for Cancer Therapy through Disrupting Microtubule and Actins Dynamics

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2023

Implantable, Biodegradable, and Wireless Triboelectric Devices for Cancer Therapy through Disrupting Microtubule and Actins Dynamics

0 Datasets

0 Files

en
2023
Vol 35 (40)
Vol. 35
DOI: 10.1002/adma.202303962

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Zhong Lin Wang
Zhong Lin Wang

Beijing Institute of Technology

Verified
Shuncheng Yao
Shaobo Wang
Minjia Zheng
+4 more

Abstract

Electric-field-based stimulation is emerging as a new cancer therapeutic modality through interfering with cell mitosis. To address its limitations of complicated wire connections, bulky devices, and coarse spatial resolution, an improved and alternative method is proposed for wirelessly delivering electrical stimulation into tumor tissues through designing an implantable, biodegradable, and wirelessly controlled therapeutic triboelectric nanogenerator (ET-TENG). With the excitation of ultrasound (US) to the ET-TENG, the implanted ET-TENG can generate an alternating current voltage and concurrently release the loaded anti-mitotic drugs into tumor tissues, which synergistically disrupts the assembly of microtubules and filament actins, induces cell cycle arrest, and finally enhances cell death. With the assistance of US, the device can be completely degraded after the therapy, getting free of a secondary surgical extraction. The device can not only work around those unresectable tumors, but also provides a new application of wireless electric field in cancer therapy.

How to cite this publication

Shuncheng Yao, Shaobo Wang, Minjia Zheng, Zhuo Wang, Zhirong Liu, Zhong Lin Wang, Linlin Li (2023). Implantable, Biodegradable, and Wireless Triboelectric Devices for Cancer Therapy through Disrupting Microtubule and Actins Dynamics. , 35(40), DOI: https://doi.org/10.1002/adma.202303962.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2023

Authors

7

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1002/adma.202303962

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access