0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessManure application mitigates land degradation and improves soil fertility. Despite many individual studies on manure effects, a comprehensive overview of its consequences for a broad range of soil properties is lacking. Through a meta-analysis of 521 observations spanning the experiments from days after pulse addition up to 113 years with continues manure input, we quantified and generalized the average responses of soil biochemical properties depending on climate factors, management, soil, and manure characteristics. Large increase of pools with fast turnover (microbial carbon (C) and nitrogen (N): +88% and +84%, respectively) compared to stable organic matter pools (+27% for organic C, and +33% for total N) reflects acceleration of C and N cycles and soil fertility improvement. Activities of enzymes acquiring C-, energy-, N-, phosphorus- and sulfur were 1.3–3.3 times larger than those in soil without manure for all study durations included. Soil C/N ratio remained unaffected, indicating the stability of coupled C and N cycles. Microbial C/N ratio decreased, indicating a shift towards bacterial domination, general increase of C and N availability and acceleration of element cycling. Composted manure or manure without mineral fertilizers induced the greatest increase compared to non-composted manure or manure with mineral fertilizers, respectively, in most biochemical properties. The optimal manure application rate for adjusting proper soil pH was 25 Mg ha−1 year−1. Among manure types, swine manure caused the greatest increase of N-cycle-related properties: microbial N (+230%), urease (+258%) and N-acetyl-β-D-glucosaminidase (+138%) activities. Manure application strategies should avoid P and N losses and pollution via runoff, leaching or gaseous emissions due to fast mineralization and priming of soil organic matter. In conclusion, manure application favors C accumulation and accelerates nutrient cycling by providing available organic substances and nutrients and thus increasing enzyme activities.
Shibin Liu, Jinyang Wang, Shengyan Pu, Еvgenia Blagodatskaya, Yakov Kuzyakov, Bahar S. Razavi (2020). Impact of manure on soil biochemical properties: A global synthesis. The Science of The Total Environment, 745, pp. 141003-141003, DOI: 10.1016/j.scitotenv.2020.141003.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2020
Authors
6
Datasets
0
Total Files
0
Language
English
Journal
The Science of The Total Environment
DOI
10.1016/j.scitotenv.2020.141003
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access