RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Image-based quantification of soil microbial dead zones induced by nitrogen fertilization

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2020

Image-based quantification of soil microbial dead zones induced by nitrogen fertilization

0 Datasets

0 Files

English
2020
The Science of The Total Environment
Vol 727
DOI: 10.1016/j.scitotenv.2020.138197

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Davey L Jones
Davey L Jones

Bangor University

Verified
Siul Ruiz
Daniel McKay Fletcher
Andrea Boghi
+8 more

Abstract

Microbial communities in agricultural soils underpin many ecosystem services including the maintenance of soil structure, food production, water purification and carbon storage. However, the impact of fertilization on the health of microbial communities is not well understood. This study investigates the spatial and temporal dynamics of nitrogen (N) transport away from a fertilizer granule with pore scale resolution. Specifically, we examined how soil structure and moisture content influence fertilizer derived N movement through the soil pore network and the subsequent impact of on soil microbial communities. We develop a mathematical model to describe N transport and reactions in soil at the pore-scale. Using X-ray Computed Tomography scans, we reconstructed a microscale description of a soil-pore geometry as a computational mesh. Solving two-phase water/air model produced pore-scale water distributions at 15, 30 and 70% water-filled pore volume. The N-speciation model considered ammonium (NH4 +), nitrate (NO3 −) and dissolved organic N (DON), and included N immobilization, ammonification and nitrification processes, as well as diffusion in soil solution. We simulated the dissolution of a fertilizer pellet and a pore scale N cycle at three different water saturations. To aid interpretation of the model results, microbial activity at a range of N concentrations was measured. The model showed that the diffusion and concentration of N in water films is critically dependent upon soil moisture and N species. We predict that the maximum NH4 + and NO3 − concentrations in soil solution around the pellet under dry conditions are in the order of 1 × 103 and 1 × 104 mol m−3 respectively, and under wet conditions 2 × 102 and 1 × 103 mol m−3, respectively. Supporting experimental evidence suggests that these concentrations would be sufficient to reduce microbial activity in the short-term in the zone immediately around the fertilizer pellet (ranging from 0.9 to 3.8 mm), causing a major loss of soil biological functioning. This model demonstrates the importance of pore-scale processes in regulating N movement and their interactions with the soil microbiome.

How to cite this publication

Siul Ruiz, Daniel McKay Fletcher, Andrea Boghi, Katherine A. Williams, Simon J. Duncan, Callum P. Scotson, Chiara Petroselli, Tiago Gerheim Souza Dias, David R. Chadwick, Davey L Jones, Tiina Roose (2020). Image-based quantification of soil microbial dead zones induced by nitrogen fertilization. The Science of The Total Environment, 727, pp. 138197-138197, DOI: 10.1016/j.scitotenv.2020.138197.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2020

Authors

11

Datasets

0

Total Files

0

Language

English

Journal

The Science of The Total Environment

DOI

10.1016/j.scitotenv.2020.138197

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access