0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessEnhancing the filtration efficiency of air filtering material without increasing its airflow resistance is a major challenge and of great significance. In this work, we report a type of active-poled nanofiber onto which in situ active poling is applied. It results in significantly enhanced filtration efficiency as well as dust holding capacity while keeping the airflow resistance constant. Owing to the in situ applied electric field, the nanofibers as well as the particulates are polarized. As a result, at a poling voltage of 2 kV, the removal efficiency and the quality factor for PM2.5 are enhanced by 17% and 130%, respectively. More importantly, the dust holding capacity represents a 3.5-fold enhancement over normal nanofibers. The approach reported in this work has the potential of being practically utilized in air purification purposes because it can bring about not only promoted filtration performance but also lowered noise and reduced power consumption.
Chun Xiao Li, Shuang Yang Kuang, Yang Hui Chen, Zhong Lin Wang, Congju Li, Guang Zhu (2018). <i>In Situ</i> Active Poling of Nanofiber Networks for Gigantically Enhanced Particulate Filtration. , 10(29), DOI: https://doi.org/10.1021/acsami.8b07203.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2018
Authors
6
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1021/acsami.8b07203
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access