RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Ignition and combustion characteristics of lithium ion batteries under low atmospheric pressure

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2018

Ignition and combustion characteristics of lithium ion batteries under low atmospheric pressure

0 Datasets

0 Files

English
2018
Energy
Vol 161
DOI: 10.1016/j.energy.2018.06.129

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Long Shi
Long Shi

University Of Science And Technology Of China

Verified
Yangyang Fu
Song Lu
Long Shi
+2 more

Abstract

Numerous of lithium ion battery fires or explosions enhance the need of fire control technology. To investigate the effectiveness of depressurization on the fire suppression of lithium ion batteries in an aircraft environment, an experimental and theoretical study is taken on the ignition and combustion characteristics of lithium ion batteries under an incident heat flux of 50 kW/m2 using a low pressure tank. Several fire parameters are measured and analyzed, including time to deflation, ignition and thermal runaway, surface and flame temperatures as well as average mass loss rate. Experimental results show the average mass loss rate and surface and the peak flame temperatures decrease whereas the time to deflation, ignition and thermal runaway increase with the reduction of the pressure, demonstrating a lower fire risk. The 30 kPa is the critical pressure for the ignition of lithium ion battery under 50 kW/m2 radiation heat flux. However, the pressure shows limited influence on the ignition temperature, radiation coefficient and time interval between the time to ignition and thermal runaway. The effect mechanisms of pressure on fire parameters are revealed. An empirical model is developed to predict the average mass loss rate of lithium ion battery under low atmospheric pressure.

How to cite this publication

Yangyang Fu, Song Lu, Long Shi, Xudong Cheng, Heping Zhang (2018). Ignition and combustion characteristics of lithium ion batteries under low atmospheric pressure. Energy, 161, pp. 38-45, DOI: 10.1016/j.energy.2018.06.129.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2018

Authors

5

Datasets

0

Total Files

0

Language

English

Journal

Energy

DOI

10.1016/j.energy.2018.06.129

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access