RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Identifying structures of continuously-varying weighted networks

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2016

Identifying structures of continuously-varying weighted networks

0 Datasets

0 Files

English
2016
Scientific Reports
Vol 6 (1)
DOI: 10.1038/srep26649

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Guanrong Chen
Guanrong Chen

City University Of Hong Kong

Verified
Guofeng Mei
Xiaoqun Wu
Guanrong Chen
+1 more

Abstract

Identifying network structures from dynamical observations is a fundamental problem currently pervading scientific research on complex systems, as understanding and modeling the structure of a complex network will lead to greater knowledge of its evolutionary mechanisms and to a better understanding of its functional behaviors. Usually, one needs to identify a network’s structure through a limited number of observations. Particularly, couplings of many real-world networks are sparse and continuously varying with time. In this study, a new framework is developed via optimization for identifying structures of continuously-varying weighted networks formed by sparsely-connected dynamical systems. Furthermore, a regularization technique is employed to increase the numerical stability of the parameter estimation algorithm. Three numerical examples are provided to illustrate the feasibility and effectiveness of the proposed identification method. In comparison with other existing techniques, the main advantages of our method include its ability to identify structures of continuously-varying weighted networks in addition to static ones, as well as its requirement of a relatively small number of observations. The proposed method has a potential applicability to a variety of evolving complex dynamical networks.

How to cite this publication

Guofeng Mei, Xiaoqun Wu, Guanrong Chen, Jun-an Lu (2016). Identifying structures of continuously-varying weighted networks. Scientific Reports, 6(1), DOI: 10.1038/srep26649.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2016

Authors

4

Datasets

0

Total Files

0

Language

English

Journal

Scientific Reports

DOI

10.1038/srep26649

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access