0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessIdentifying network structures from dynamical observations is a fundamental problem currently pervading scientific research on complex systems, as understanding and modeling the structure of a complex network will lead to greater knowledge of its evolutionary mechanisms and to a better understanding of its functional behaviors. Usually, one needs to identify a network’s structure through a limited number of observations. Particularly, couplings of many real-world networks are sparse and continuously varying with time. In this study, a new framework is developed via optimization for identifying structures of continuously-varying weighted networks formed by sparsely-connected dynamical systems. Furthermore, a regularization technique is employed to increase the numerical stability of the parameter estimation algorithm. Three numerical examples are provided to illustrate the feasibility and effectiveness of the proposed identification method. In comparison with other existing techniques, the main advantages of our method include its ability to identify structures of continuously-varying weighted networks in addition to static ones, as well as its requirement of a relatively small number of observations. The proposed method has a potential applicability to a variety of evolving complex dynamical networks.
Guofeng Mei, Xiaoqun Wu, Guanrong Chen, Jun-an Lu (2016). Identifying structures of continuously-varying weighted networks. Scientific Reports, 6(1), DOI: 10.1038/srep26649.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2016
Authors
4
Datasets
0
Total Files
0
Language
English
Journal
Scientific Reports
DOI
10.1038/srep26649
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access