0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessFor the world's population, rice consumption is a major source of inorganic arsenic (As), a nonthreshold class 1 carcinogen. Reducing the amount of total and inorganic As within the rice grain would reduce the exposure risk. In this study, grain As was measured in 76 cultivars consisting of Bangladeshi landraces, improved Bangladesh Rice Research Institute (BRRI) cultivars, and parents of permanent mapping populations grown in two field sites in Bangladesh, Faridpur and Sonargaon, irrigated with As-contaminated tubewell water. Grain As ranged from 0.16 to 0.74 mg kg−1 at Faridpur and from 0.07 to 0.28 mg kg−1 at Sonargaon. Highly significant cultivar differences were detected and a significant correlation (r = 0.802) in the grain As between the two field sites was observed, indicating stable genetic differences in As accumulation. The cultivars with the highest concentration of grain As were the Bangladeshi landraces. Landraces with red bran had significantly more grain As than the cultivars with brown bran. The percent of inorganic As decreased linearly with increasing total As, but genetic variation within this trend was identified. A number of local cultivars with low grain As were identified. Some tropical japonica cultivars with low grain As have the potential to be used in breeding programs and genetic studies aiming to identify genes which decrease grain As.
Gareth J. Norton, MR Islam, Claire Deacon, Fang-jie Zhao, Jacqueline L. Stroud, S. P. McGrath, Shofiqul Islam, M. Jahiruddin, Jörg Feldmann, Adam H. Price, Andrew A. Meharg (2009). Identification of Low Inorganic and Total Grain Arsenic Rice Cultivars from Bangladesh. Environmental Science & Technology, 43(15), pp. 6070-6075, DOI: 10.1021/es901121j.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2009
Authors
11
Datasets
0
Total Files
0
Language
English
Journal
Environmental Science & Technology
DOI
10.1021/es901121j
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access