0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThe erosion of blanket peat is a major environmental issue in the UK. Maps of erosion extent and peat composition, especially humification and moisture content, would aid our understanding of the erosion process and provide information for management decisions. HyMap images, acquired as part of the SAR and Hyperspectral Airborne Campaign (SHAC), were used to test candidate indices of peat composition for eroded blanket peat in the southern Pennines. Peat physical properties, including moisture content and degree of humification (measured as transmission), were derived in the laboratory and related to the remotely sensed data. Strong correlations were found between HyMap SWIR reflectance and transmission, but other peat physical properties were not significantly correlated. Spectral indices were calculated to express the depth of cellulose, lignin and water absorption features. Strong positive correlations were found between transmission and an adjusted cellulose absorption index (CAI), r 0.71, and the gradient of its shoulders between 2020 and 2200 nm, r 0.89. Other indices also performed well. Normalized indices performed better because they allowed for differences in brightness. Higher moisture content in poorly humified peats may have reinforced the effect of deeper ligno-celluloic absorptions, but further sampling is required to test this. The results suggest the potential for hyperspectral remote sensing to provide information on surface peat composition across large areas.
Julia Mcmorrow, Mark Cutler, Martin Evans, A. Alroichdi (2004). Hyperspectral indices for characterizing upland peat composition. International Journal of Remote Sensing, 25(2), pp. 313-325, DOI: 10.1080/0143116031000117065.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2004
Authors
4
Datasets
0
Total Files
0
Language
English
Journal
International Journal of Remote Sensing
DOI
10.1080/0143116031000117065
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access